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ABSTRACT 
 
A three dimensional finite element based numerical model was used to analyze 

the heat transfer characteristics of various staggered short pin-fin array heat exchangers.  

The simulation was validated against data from an experimental rig as well as historical 

data and then used to estimate the heat transfer coefficient and pressure drop for a wide 

range of Reynolds numbers for circular and airfoil-shaped pin fins.  Circular pin 

configuration variations included changes in pin spacing, axial pitch and pin height ratio.  

Airfoil pin variations also included changes in length and aspect ratio.  Correlations for 

Nusselt number and friction factor were developed.  Using established performance 

metrics, optimum configurations for both pin shapes were determined.  The optimum 

airfoil pin array was shown to match the heat transfer rates obtained by the optimum 

circular pin configuration while incurring less than one third the specific fluid friction 

power loss.  The results from this study would be of direct value in the design of a shroud 

enclosed heat exchanger concept being proposed for turbine blade cooling, or for cooling 

of high power electronic components, or in other high heat flux dissipation applications 

requiring a low-profile, high area-density based micro-heat exchanger design. 
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EXECUTIVE SUMMARY 
 

Motivated by the growing trend towards the development of miniaturized heat 

exchangers for large heat flux applications, a comprehensive study was carried out of the 

flow and heat transfer characteristics of staggered pin-fin array heat exchangers of 

various configurations. The primary thrust of this work was based on a fully three 

dimensional finite element based numerical model of the heat exchangers. The critical 

length scale of the heat exchanger that allows scaled up versions of the problem to be 

studied was identified and verified. For a limited set of configurations, the numerical data 

were validated against experimental data obtained from a modular rig that was designed 

to cover various scenarios.  These data were used to predict the heat transfer coefficient 

and pressure drop for a wide range of Reynolds numbers for circular and airfoil shaped 

fins.  Circular pin configuration variations included changes in pin spacing, axial pitch 

and pin height ratio.  Airfoil pin variations also included changes in length and aspect 

ratio.  Working correlations for Nusselt number and friction factor were developed.  

Using established performance metrics, optimum configurations for both pin shapes were 

determined.  The optimum airfoil pin array was shown to match the heat transfer rates 

obtained by the optimum circular pin configuration while incurring less than one third the 

specific fluid friction power loss.  The results from this study would be of direct value in 

the design of a shroud enclosed heat exchanger concept being proposed for turbine blade 

cooling, or for cooling of high power electronic components, or in other high heat flux 

dissipation applications requiring a low-profile, high area-density based micro-heat 

exchanger design. 
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I. INTRODUCTION  
 

A. BACKGROUND/MOTIVATION 
Historically, short pin-fin arrays have played an important role in enhancing heat 

dissipation, particularly for turbine blade cooling.  Their ability to dissipate heat 

effectively has enabled blade designers to meet the rigorous demands for higher turbine 

inlet temperatures. The requirement for increased specific thrust from future engine 

designs will serve to demand even more performance from any turbine blade cooling 

scheme.     

Commonly, pin-fin arrays are made up of banks of solid pins that span the end 

walls of an internal flow passage or duct.  The array is usually configured with cylindrical 

pins in either a staggered or in-line arrangement with the coolant flowing perpendicular 

to the pin axes. Typical array dimensions are pin diameter (D), pin height (H), 

streamwise pin spacing (X) and spanwise pin spacing (S) as shown in Figure 1.  Pins can 

either be long with H/D greater than about 10, or short with H/D on the order of unity.  

Turbine blade cooling arrays fall into the latter category and form the subject of this 

study.   

 
Figure 1 Schematic of a staggered pin-fin array 

 

Currently turbine blade designers employ these pin-fin arrays mainly in the 

trailing edge of the blade as shown in Figure 2.  Due to manufacturing constraints, ribbed 

channels and impingement cooling cannot be accommodated in these narrow regions 

(Ref. 1). One proposed concept for enhanced turbine blade cooling involves mounting 

microscale pin fin arrays on the blade surface and covering them with a thin metal skin.  
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Cooling air would circulate from within the blade, through these shrouded arrays and exit 

at various points for film-cooling as shown in Figure 3. 

Pin-Fin Array

 
Figure 2 Typical application in a turbine blade 

Blade Interior

Shroud

 
Figure 3 Proposed blade shroud configuration 



 3

Alternatively, these pin fin arrays could be used to cool integrated circuit chips in 

electronic equipment.  These components could be mounted directly on top of a 

microscale pin-fin array cooled by forced convection.  An economical electro-deposition 

process for manufacturing microscale pin fin heat exchanger arrays is described in by 

Stephens et al. (Ref. 2) 

B. PREVIOUS WORK 

Because of the critical function pin-fin arrays serve, empirical studies dating back 

to the 1980s have been carried out to determine and improve the effectiveness of such 

heat exchangers.  VanFossen (Ref. 3) examined staggered pin-fin array configurations for  

H/D values of 0.5 and 2.0.  He found that the presence of the pins significantly enhanced 

the array averaged heat transfer coefficient.  He also noted that existing long pin 

correlations overestimated the short pin heat transfer coefficients, and thus established the 

need for further research.  Sparrow et al. (Ref. 4) later confirmed this finding by studying 

the heat transfer properties for cylinders adjacent to endwalls.  They discovered that wall-

cylinder interactions were confined to one pin diameter from the wall and decreased heat 

transfer compared to regions of the cylinder away from the wall.     

Taking the study further, Metzger, et al. (Ref. 5), examined the streamwise row-

by-row development of the heat transfer coefficient for a staggered array.  Using a 10-

row array with H/D = 1.0, S/D = 2.5 and X/D = 1.5 and 2.5, they found that the heat 

transfer coefficient peaked between the third and fifth row of the array.  Their work 

established a useful baseline empirical model used to validate future experimental results 

such as in the work of  Chyu (Ref. 6), Chyu & Goldstein (Ref. 7), and Li et al. (Ref. 8).  

Jubran, et al. (Ref. 9) also experimentally investigated the optimal pin-fin spacing 

that would provide the maximum heat transfer rate per unit area. Their results showed the 

optimum X/D and S/D values to be 2.5 for all flow rates tested.  However, they used a 

fixed size endwall that meant various pin spacing configurations resulted in different 

numbers of pins.  This aspect of their work presents a difficulty in comparing their results 

with other studies such as the work of Metzger, et al. (Ref. 5).  In addition, H/D was 

approximately 9.5, and thus more representative of a long pin array. 



 4

Other experimental studies have focused on alternative pin shapes in an effort to 

improve heat exchanger performance.  In 1983, Metzger et al. (Ref. 10) studied heat 

transfer and pressure drop for oblong pin-fins oriented with the major axis parallel to the 

flow direction.  They found that both pressure drop and heat transfer rates were lower 

than they were for circular pin-fin arrays.  Following this, Arora et al. (Ref. 11), studied 

similar oblong configurations with the major axis aligned at various angles of attack 

relative to the flow direction.  Arora found that pressure drop was lower and heat transfer 

rates were as good or better for the oblong pins than circular pins when the major axis 

was aligned with the flow.  For other angles of attack, the oblong pins offered no 

advantage over the circular pins.  Later, Chen et al. (Ref. 12) and Li et al. (Ref. 8) studied 

drop-shaped and elliptical pin fin arrays respectively.  They concluded that these alternate 

shapes provided better heat transfer rates and approximately half of the friction factor of 

the circular pin-fin arrays. 

The relative contribution to overall heat transfer from the pins and the endwalls 

has been an issue of considerable debate, and has been discussed in several earlier 

studies.  VanFossen (Ref. 3) first reported that the pin surface heat transfer coefficient 

was 35 percent greater than that of the endwall.  Metzger, et al. (Ref. 10) determined that 

both were within 10 percent of each other, and then later reported that the pin surfaces 

had approximately 50% higher heat transfer coefficient than the endwall. Contradicting 

all previous results, Al Dabagh, et al. (Ref. 13) indicated that the endwall heat transfer 

coefficient was 15 to 35 percent higher than that for the pin fins. Offering a solution, 

Chyu, et al. (Ref. 14) determined that the heat transfer coefficient on the pin surface was 

10 to 20 percent higher than the uncovered endwall. 

Because experimental work can be expensive and time consuming, not all 

configurations of interest have been tested.  With the current availability of tremendous 

computing resources and several powerful commercially available computational fluid 

dynamics software packages, the next logical step was to conduct these studies 

numerically.  Recognizing the potential advantages afforded by numerical modeling for 

pre-design evaluation, Shah et al. (Ref. 15) have made a compelling case for the 
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imperative need for comprehensive computer-based studies of compact heat exchanger 

behavior and performance prior to empirical characterization and manufacture.  

Donahoo, et al. (Ref. 16) approached this study as a numerical optimization 

problem using a general-purpose viscous flow solver to simulate the heat transfer and 

flow features within a staggered pin-fin array. A 2-D model was constructed and meshed 

to capture the tumultuous flow characteristics around the pins and in the wall regions of 

the internal flow passages of the heat exchanger.  This study has provided some insight 

into the flow and heat transfer characteristics, however due to, the 2-D nature of the 

model it cannot be used to treat the effects of the bounding endwalls and hence the role of 

flow passage height cannot be incorporated into the characterization. 

 

C. OBJECTIVES 
After an extensive literature search, it was evident that the staggered short pin-fin 

heat exchanger had not been simulated with a three dimensional numerical model. The 

major goal of this research was to develop an experimentally validated three dimensional 

numerical model of the staggered short pin-fin heat exchanger. This model would then be 

used to accomplish the following objectives: 

1. To quantify the heat transfer characteristics and pressure drop of several 

staggered short pin-fin array heat exchanger configurations.   

2. To develop simple and reliable pin-fin heat exchanger performance 

correlations for various circular pin configurations and sizes.  Demonstrating that these 

correlations are independent of heat exchanger size would be critical for extending them 

to microscale heat exchangers. 

3. To perform a parametric study of an airfoil-shaped pin fin heat exchanger.  

4. To determine optimal pin-fin array configurations based on suitably 

defined measures of heat exchanger effectiveness. 
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D. METHODOLOGY 
The basic steps involved constructing a suitable numerical model, validating the 

model with experimental results and finally applying the model to a carefully defined test 

matrix.  The following sections detail this process. 
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II. NUMERICAL ANALYSIS 
In this section, the numerical portion of the heat exchanger study is presented. 

A. CIRCULAR PIN BASELINE STUDY 
This first subsection provides a detailed numerical analysis of the circular pin-fin 

array with H/D = 1. 

1. Numerical Simulation 

a. Modeling 
The numerical modeling was performed using the FLOTRAN solver of 

the commercial finite element analysis package ANSYS (version 6.0).  This code was 

selected with the expectation that periodic unsteadiness would be confined by relatively 

tight physical bounds and would not significantly affect the total time averaged flow 

solution.  Based on later observation of the steady reduction in numerical residual values 

and steadiness in experimental data, this assumption was considered to be justified. This 

study examined turbulent flow and heat transfer characteristics within a planar 3-D 

staggered short pin-fin array heat exchanger.   

In order to reduce computational requirements, some simplifying 

assumptions were made.  First, by taking advantage of the symmetry planes, only one 

quarter of the heat exchanger was modeled as shown in Figure 4.  Further, only the fluid 

(air) flow and heat transfer behavior were modeled thereby eliminating the need to model 

the solid regions of the heat exchanger (pins and end wall) and calculate their temperature 

distributions.  This approach assumes that the heat exchanger surfaces could be treated as 

isothermal.  Given that the pins are relatively short and metallic, a simple pin-fin analysis 

was carried out to validate this assumption.  Calculations justifying this decision are 

shown in Appendix A.  Therefore a conjugate analysis has not been implemented at this 

stage, and the passage walls and pin-fins were modeled as solid isothermal boundaries. 

Two basic models were created in this study.  The first model, shown in 

Figure 4 simulated a staggered array consisting of 10 rows of pins in the streamwise 

direction, and alternating between 4 and 5 pins per row in the spanwise direction.  This 

represented a heat exchanger of finite width similar to the arrays tested by Metzger et al. 

(Ref. 5) and was used primarily for validation runs.  The second model also simulated a 

staggered pin array with 10 rows of pins, but infinitely wide in spanwise extent.  In this 
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Figure 4 Numerical model details 

 
 

 
Figure 5 Infinite width numerical model 
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case, one half of an infinitely wide array was simulated.  This infinite span condition was 

numerically achieved by placing “symmetry”, i.e. zero flux boundaries on both the 

spanwise edges of the array as shown in Figure 5.  This was done to simulate the 

behavior in microscale heat exchangers of ultimate interest, which typically have large 

feature densities consisting of many tens of pins per row whereby contributions from the 

sidewalls would make up but a very small fraction of the total flow solution.  Both the 

finite and infinite models were used to complete the chosen test matrix.  Figure 6 shows 

results for a representative configuration that was simulated with both models.  It is clear 

that both models produced nearly identical results for Nusselt number and close results 

for friction factor and the implications will be discussed in more detail below.  Friction 

factor for arrays with more than 5 pins in the spanwise direction would fall between the 

limits shown in this graph and are also well within the accuracy limits for the friction 

factor correlation developed in this study. 

For consistency and efficiency, each numerical simulation was performed 

by executing a macro.  Desired test configurations such as Reynolds number, axial pitch, 

pins spacing, height ratio, cooling air and wall temperature were specified as inputs to the 

macro. In addition to building the model, the macro was used to control mesh density and 

boundary conditions. Further details on the macro and a sample macro are provided in 

Appendix B.  

To be consistent with earlier studies the heat exchanger array test section 

was placed between constant area adiabatic entrance and exit duct sections (see Figure 5).  

As in Metzger’s experiments (Ref. 5), the entrance duct measured 12.7 cm in streamwise 

length.  However, while Metzger used a 7.62 cm exit duct, the model exit duct in this 

study was extended to 12.5 cm, or 25 hydraulic diameters, to ensure well mixed 

conditions at the exit plane for reliable extraction of numerical data.  All heated endwall 

and pin surfaces were maintained at a specified temperature.  Inlet air velocity and 

temperature were specified to produce the desired Reynolds numbers, and the no-slip 

condition was observed on all rigid boundaries.  Velocities and heat fluxes normal to 

symmetry boundaries were set to zero. 
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Figure 6 Comparison of results from finite and infinite models 
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b. Solution Technique and Numerical Accuracy 
All models were solved using a standardized set of criteria.  Each model 

was solved using the standard kt-ε turbulence model with Van Driest coupling for the wall 

region.  Additionally, all flows were treated as being incompressible and at steady state.  

The CFD FLOTRAN solver in ANSYS was set to use the Preconditioned Generalized 

Minimum Residual (PGMR) method and the Collocated-Galerkin (COLG) approach was 

used to discretize the advection term.  More information on these CFD algorithms can be 

found in Appendix C or in the ANSYS Theory Manual (Ref. 17).     

Initially, attempts were made to discretize the advection term using the 

Streamline Upwind/Petro-Galerkin (SUPG) approach in order to reduce solution time. 

However, solution analysis revealed that this method although quicker, produced an 

unreliable and oscillatory heat transfer rate solution.  Figure 7 depicts the behavior of 

these two solution approaches applied to a typical problem.  In this particular case, the 

goal of the task was to replicate the experimental study by Metzger et al. (Ref. 5) in order 

to validate the numerical model.  The COLG method yielded a heat transfer rate of 3.41 

watts, while 3.42 watts would have been required to match the results of Metzger. The 

SUPG method appeared to provide a less stable answer, while the COLG method yielded 

stable results that matched experimental results within 0.3%. 

c. Grid Independence 
Meshing was carefully specified to ensure maximum coverage in areas of 

interest such as regions of increased velocity and temperature gradient near the walls as 

shown in Figure 8.  Additionally, mesh density was meticulously scaled to facilitate grid 

independence studies.  Grid independence was taken to be achieved when the heat 

transfer results could be treated as effectively invariant, i.e. when changes in the overall 

heat transfer rate remained below 2% for subsequent change/refinement in the grid.  

Table 1 provides a representative example of a grid independence check for a given 

configuration.  Finally a solution was considered valid only if the heat exchanger fluid 

outlet temperature prediction from the numerical model, matched the temperature 

prediction made from a simple energy balance to within 0.1K (<2%).   
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Figure 7 Comparison of advection discretization schemes 
 
 

Table 1 Grid independence, X/D = S/D = 3.0, ReDh = 5,000 
 

Parameter Grid 1 Grid 2 Grid 3 
x x y x z 
/pina 

200x20x9 
/27 

220x22x12 
/29 

230x23x15 
/31 

nodes 83,760 123,851 170,928 

Q (W) 1.8163 1.9065 1.9076 

Tout (K) 303.87 304.02 304.01 

m (kg/s) 4.70E-04 4.72E-04 4.73E-04 
aIndicates grid divisions along test section in x, y and z directions 
and along pin edges 
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Figure 8 Sample model meshing 
 
2. Test Approach 

a. Model Validation 
In order to validate the model, several runs were made in an attempt to 

reproduce the experimental results obtained by Metzger et al. (Ref. 5) and Arora (Ref. 

11). Table 2 shows the configurations and conditions used for validation.  The final 

column shows the temperature difference between the prescribed isothermal wall and pin 

heat exchanger surfaces, and the incoming air at 300K. 

For validation, the Reynolds number was defined based on pin diameter, 

and the maximum geometry-based velocity as follows (originally used by Metzger): 

maxReD
U Dρ
µ

=  (1) 

where 

( )
( )max

1

in
SU DU

S
D

=
−

 (2) 
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Table 2 Validation configurations 
 
 Config S/D X/D H/D Re ∆T(K) 

Metzger 1 2.5 1.5 1.0 3980, 7310, 13800, 

20000, 30000, 41500, 

69100, 98900 

6,12 

Metzger 2 2.5 2.5 1.0 3590, 7340, 13900, 

24900 37900, 62100, 

93500 

6,12 

Arora 1 2.22 2.83 1.07 6500,13827,24000 6 

Arora 2 2.42 2.83 1.07 4200,13092,23000 6 

Arora 3 2.46 3.39 1.28 4800,11012,29000 6 

 

 
 

The graphs in Figure 9 through Figure 12 show the results from these 

validation runs plotted and compared with the data and correlations derived from the 

experiments of Metzger and Arora. Here, the Nusselt number and friction factor are 

defined as: 

 D
hDNu
k

=  (3) 

and  

 2
max2
Pf

U Nρ
∆

=  (4) 

where N is the number of pin-fin rows in the streamwise direction.  In the 

experiments conducted by Arora, N was replaced with array length. 
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Figure 9 Comparison of numerically obtained Nusselt number with experimental data of 
Metzger (After Ref. 5) 
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Figure 10 Comparison of numerically obtained friction factor with experimental data of 
Metzger (After Ref. 5) 
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Figure 11 Comparison of numerically obtained Nusselt number with experimental data of 

Arora (After Ref. 11)  
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Figure 12 Comparison of numerically obtained friction factor with experimental data of 

Arora (After Ref. 11) 
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From these charts it can be seen that the numerical model has predicted 

Nusselt number very well.  Table 3 shows a comparison between the correlations 

developed by Metzger et al. (Ref. 5) and correlations developed using the numerical 

model during validation.   

Table 3 Validation results 
 

X/D Metzger experimental ANSYS Model 

1.5 0.7280.069ReD DNu =  0.7210.075ReD DNu =  

2.5 0.7070.092ReD DNu =  0.7070.090ReD DNu =  

  

The corroboration with Nusselt number results from Arora is also quite 

good especially for the higher Reynolds number cases. However, the numerically 

predicted friction factor results do not provide the same level of consistency.  Compared 

to Metzger’s data, the numerical model seems to fall in between the two configurations 

tested.  When compared to Arora’s data, the numerical model agrees extremely well with 

the experimental configuration 2 but tends to overestimate friction factor for 

configurations 1 and 3.  Despite these differences noted, the model was considered useful 

as it displayed relative trends in friction factor between configurations to the same degree 

as the experiment. 

Based on the comparisons between the numerical results and existing 

experimental data, the model was considered validated for Nusselt number predictions for 

Reynolds numbers between 3,500 and 100,000.  The model was considered useful but 

moderately conservative for predicting friction factors over the same range. 

b. Array Characteristic Length 
For validation, pin diameter was chosen as the characteristic length in 

order to corroborate experimental results.  However, with further numerical runs it 

became evident that the pin diameter was not truly representative of the characteristic 

length scale in the convoluted array flow passages for all the test configurations being 

considered in this study since it failed to account for array differences due to variations in 

X/D.  Thus a more suitable characteristic length based on the ratio of open volume (Vopen) 
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available for fluid flow in the array, to the total fluid wetted area (Aw), was adopted as 

more truly representative of the tortuous flow paths and defined as: 

 
4 open

h
w

V
D

A
=  (5) 

This was the same characteristic length used by VanFossen (Ref. 3). 

c. Test Matrix 
The model was used to study the staggered short pin-fin heat exchanger 

for various values of pin spacing and Reynolds numbers.  Table 4 shows the variables 

and their values chosen for this study.  Except for a few size comparison runs, all test 

sections were numerically constructed with an axial pitch of 12.7 mm, while the pin 

diameter was varied to meet spacing requirements.  In all cases, H/D was set to 1.0. 

Table 4 Test configurations, baseline numerical circular pin study 
 

Variable Values 

ReDh 3,000 – 50,000 

S/D 1.25, 1.5, 2.0, 3.0, 5.0 

X/D 1.25, 1.5, 2.0, 3.0, 5.0 

 

Using the revised definition of the characteristic length scale in Eq. (5), 

the Reynolds number is now defined as: 

 Re
h

h
D

UDρ
µ

=  (6) 

where  

 
mU
Aρ

=  

and 

 openV
A

L
=  
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3. Data Reduction 

Key results were either obtained directly from the CFD package, or calculated 

using fundamental heat transfer relationships or conservation laws.  CFD direct outputs 

included the total heat transfer rate, inlet and outlet bulk temperatures, pressure drop and 

mass flow rate. The following steps were followed to calculate the test array Nusselt 

number and friction factor. 

a. Nusselt Number Calculations 
1.  Total heat transfer rate and mass flow rate were recorded directly from the CFD 

results file after grid independence had been verified for each run. 

2.  Outlet bulk temperature was calculated from a simple energy balance as: 

 out in
p

QT T
m C

= +  (7) 

3.  As a check, this outlet temperature was compared with the outlet bulk temperature 

provided by the CFD results file.  In most cases, the temperatures were identical.  If 

the temperatures differed by more than 0.1 K, then the run was repeated with either a 

revised/finer mesh and/or with an increased number of solver iterations. 

4.  With output temperature resolved, the log mean temperature difference was 

calculated over the test array as follows: 

( ) ( )

ln

wall in wall out
lm

wall in

wall out

T Tbulk T Tbulk
T

T Tbulk
T Tbulk

− − −
∆ =

 −
 − 

 (8) 

5.  The heat transfer coefficient was calculated using the following equation: 

 array
wetted lm

Qh
A T

=
∆

 (9) 
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Finally, the Nusselt number for the array was determined using: 

 
h

array h
D

h D
Nu

k
=  (10) 

b. Friction Factor Calculation 
The friction factor in the array was calculated using the following 

definition: 

 

 21
2

array hP D
f

U Lρ
∆

′ =  (11) 

 

where L was the overall streamwise length of the array. 

c. Specific Fluid Friction Power 

 
 Specific fluid friction power, useful in comparing heat exchanger 

performance was calculated using the following definition: 

 
m pE

Aρ
∆

=  (12) 

where A can be either wetted area or heat exchanger array footprint/face area.  

Note that E has the units of W/m2.  

4. Results And Discussion 

Upon completion of all the test runs, several key performance indicators were 

examined to understand the heat transfer characteristics and trends for each pin-fin 

configuration and Reynolds number.  No data were obtained for the specific case of S/D 

= 1.25, when X/D was 3.0 and 5.0, since numerical convergence was not achieved for 

these configurations.  

a. Nusselt Number 

The Nusselt number was calculated for each test configuration. The graphs 

in Figure 13 and Figure 14 show Nusselt number plotted against Reynolds number on a 

logarithmic scale for specific S/D and X/D configurations.  While plots of the other 
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configurations are not shown in the interest of brevity, all of them displayed similar 

characteristics and trends as the ones provided. 

From these figures it was evident that Nusselt number could be correlated 

as a power law function such as Equation 13. Moreover, from Figure 13, it was also 

apparent that Nusselt number was fairly insensitive to variations in S/D for a given X/D 

and Reynolds number.  However, from Figure 14, it was apparent that S/D had a greater 

effect on Nusselt number.  These observations led to the conclusion that the leading 

coefficient, CN, was a weak function of X/D, and a strong function of S/D.  Similarly the 

exponent, m, was observed to be a weak function of S/D. 
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Figure 13 Nusselt number for S/D = 2.0, circular pins 
 

After analyzing the curve fit data for the different configurations, the 

correlation for Nusselt number was derived as: 

 Re
h h

m
D N DNu C=  (13) 

where the values of CN and m are provided in Table 5.  Using these values, 

the array Nusselt number can be predicted to within 5% for 3,000 Re 50,000
hD≤ ≤  for  

1.25 5.0S D≤ ≤  and 1.25 5.0X D≤ ≤ . 
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Figure 14 Nusselt number for X/D = 3.0, circular pins 
 
Table 5 Nusselt number correlation constants, circular pins, H/D = 1 
 

 
S/D 

 1.25 1.5 2.0 3.0 5.0 
X/D CN m CN m CN m CN m CN m 
1.25 0.050 0.832 0.069 0.770 0.085 0.748 0.154 0.680 0.193 0.630
1.5 0.071 0.801 0.090 0.753 0.152 0.683 0.166 0.671 0.165 0.650
2.0 0.097 0.777 0.145 0.707 0.183 0.669 0.162 0.680 0.198 0.642
3.0 - - 0.244 0.659 0.252 0.639 0.259 0.626 0.225 0.622
5.0 - - 0.431 0.605 0.210 0.662 0.278 0.616 0.238 0.612

 

However, these constants may also be approximated by simple equations 

for ease in programming applications using the following definitions: 

 ( ) ( )0.5 0.050.04NC S D X D=  (14) 
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and 

 ( ) 0.130.865m S D −=  (15) 

 
Using these approximations, Nusselt number can be predicted to within 

±20% for 3,000 Re 50,000
hD≤ ≤  for  1.25 5.0S D≤ ≤  and 1.25 5.0X D≤ ≤ . 

b. Friction Factor 
The friction factor results have also been plotted for each configuration in 

a similar manner.  The graph in Figure 15 shows friction factor plotted against Reynolds 

number on a logarithmic scale for X/D = 2.0.  As in the case of Nusselt number, plots of 

the other configurations have been omitted for brevity.  It can be readily seen that the 

friction factor varied greatly with changes in S/D.  This behavior can be reasoned by 

noticing that for small spanwise spacing the entering flow is forced to follow a tortuous 

path around the pin fins thus resulting in large pressure drops. However as S/D  is 

increased there is an effective opening up of the flow passages and the friction factor 

approaches the open duct value. The friction factor also increased as X/D was increased, 

primarily due to the increase in the overall array length. 

As in the case with Nusselt number, the friction factor was related to 

Reynolds number with a power function correlation.  Using the constants provided by 

Table 6, the following correlation predicts friction factor to within 5% for 

3,000 Re 50,000
hD≤ ≤  for  1.25 5.0S D≤ ≤  and 1.25 5.0X D≤ ≤ .  

Re
h

n
F Df C′ =  (16) 

 
Table 6 Friction factor correlation constants, circular pins, H/D = 1 
 

 
S/D 

 1.25 1.5 2.0 3.0 5.0 
X/D CF n CF n CF n CF n CF n 
1.25 2.525 -0.018 1.273 -0.040 1.149 -0.050 1.339 -0.069 1.281 -0.155 
1.5 4.418 -0.030 1.849 -0.045 1.602 -0.093 1.175 -0.071 1.152 -0.140 
2.0 6.243 -0.025 2.318 -0.041 1.429 -0.071 1.192 -0.088 1.189 -0.141 
3.0 - - 2.845 -0.043 1.538 -0.071 1.154 -0.100 1.192 -0.160 
5.0 - - 3.238 -0.039 1.512 -0.073 1.155 -0.119 1.274 -0.198 
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Figure 15 Friction factor for X/D = 2.0, circular pins 
 

 As with Nusselt number, there may be cases where a simpler mathematical 

model is desired for programming.  In order to derive such a model, relationships for the 

behavior of friction factor as a function of X/D and S/D were examined.  Interestingly, 

the behavior of the friction factor for configurations with S/D less than 2.0 was very 

different from configurations with S/D greater than 2.0.  Physically, this is likely due to 

the tortuous nature of the flow lines when S/D is less than 2.0 for which the geometry 

clearly shows that the uniform flow at the entrance is forced to negotiate a serpentine 
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path around the pins as noted above.   However for S/D greater than 2.0, the geometry 

indicates the presence of a clear and direct straight “line-of-sight” flow path through the 

array, whereby it can be argued that some of the flow streamlines can pass straight 

through the array with minimal or no interaction with the pins, thus resulting in a 

significant decrease in the pressure drop.  Figure 16 shows two numerical solutions with 

streamlines plotted to further illustrate the effects of S/D on the flow.  From this graphic, 

it is clear that the wider pin spacing results in smoother streamlines and a more direct 

path through the array.  The narrow pin spacing causes nearly all streamlines to negotiate 

a serpentine path around the pins.  These differences in flow geometry result in very 

different pressure drop characteristics. As a result, two separate correlations for friction 

factor based on S/D were developed to account for this behavior. 

 

 

Figure 16 Effect of S/D on streamlines 
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The friction factor correlations developed are as follows: 

( ) 0.85 0.512 7.6236 Re
hDf S D B− − ′ = − +  (17) 

where 

( ) ( ) ( )12 0.598.142 ln 0.9197B S D X D S D− −= +  (18) 

for 1.25 2.0S D≤ ≤ , and  

( ) ( ) ( ) 0.81.6721 10.9262 0.1327 S DB S D X D
− −  = −    (19) 

for 2.0 5.0S D< ≤ . 

These correlations predict friction factor to within ±20% for 

3,000 Re 50,000
hD≤ ≤  for  1.25 5.0X D≤ ≤ . 

 

c. Heat Transfer Coefficient 
One of the unique advantages of a numerical study is the ability to obtain 

detailed local heat transfer coefficient values at any point in the test array.  These data 

provide opportunities to evaluate the relative contributions of both the endwall and pin-

fin surface to the total heat transfer problem and identify other regions of interest.  

Additionally, it is possible to observe the changes in heat transfer coefficient based on 

location on the pins and along the endwall. Ultimately, these observations can shed light 

on ways to improve heat exchanger performance.  In this section, the numerical solution 

for the configuration X/D = S/D = 5.0 at ReDh = 20,000 has been used to probe the local 

heat transfer behavior in the array in detail. 

As previously stated, pin-fins have been introduced in the otherwise planar 

duct in order to enhance overall heat transfer performance.  Although endwall surface 

area is reduced by the presence of pins, the pins improve heat transfer rate due to the 

addition of their own surface area, and also by increasing flow turbulence levels on the 

endwall thereby giving rise to better transport rates.  Figure 17 provides a contour plot 

indicating the local values of the heat transfer coefficient on the endwall of the array as 

the flow moves from left to right.  It is evident that the pins are affecting these local 

values.  For example, the heat transfer coefficient is reduced in the wake or “shadow” of 
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each pin where the local velocities are low.  Further downstream of each pin, the local 

heat transfer coefficient is enhanced as vortices produced by the pins strike the endwall. 

Note also that as expected the large velocities achieved in the flow region between the 

pins tend to increase the film coefficient.  

 

Figure 17 Endwall heat transfer coefficient 
 

In order to quantify the heat transfer benefits gained by adding pins to the 

planar duct, a comparison was made with empty duct performance.  To this end, a 

numerical model with the same dimensions, but without any pins, was constructed.  

Using this model, simulations were performed at ReDh = 20,000, the same conditions that 

were used to develop the contour map in Figure 17.  As a cross-check, heat transfer 

performance of the empty duct was also calculated using well established semi-empirical 

correlations (Ref. 18).  The numerical and analytical solutions for the empty duct were 

found to be in very good agreement as shown in Table 7. 

Table 7 Empty duct solution comparison 
 

Parameter Analytical 
Prediction 

Numerical 
Solution 

Friction factor 0.026 0.027 

Nusselt Number 50.5 53.6 

 

Figure 18 provides a qualitative comparison of the endwall heat transfer 

coefficients for the pin-fin array and the empty duct.  The data for this plot were obtained 

directly from the resolved numerical model by recording heat transfer coefficient values 

for nodes adjacent to the endwall. These nodes were situated on three separate 
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streamwise paths for the pinned array.  One path ran unobstructed between pins while the 

other two ran through pin centerlines.  These paths were chosen to qualitatively evaluate 

the effects of the pins on endwall heat transfer coefficient.  For the empty duct, a single 

streamwise path was chosen in the center of the duct.  Note that for both configurations, 

local heat transfer coefficients decrease with streamwise travel, initially due to the 

thickening boundary layer and developing effects, and after the first row additionally due 

to flow separation effects.  However, in nearly all cases, these coefficients for the pinned 

endwall are greater than those on the endwall of the empty duct. This clearly illustrates 

the beneficial effect that turbulence from the pins has on the endwall heat transfer 

performance. The only regions of lower heat transfer coefficient for the pinned array are 

in the immediate wake or “shadow” of the pins where local velocities are lower.  Slightly 

further downstream of the pin, the heat transfer coefficient rapidly climbs almost to the 

value of the unobstructed path. 
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Figure 18 Endwall heat transfer coefficient trends 
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Examination of heat transfer coefficient trends on the pin surfaces also 

provided interesting results.  Figure 19 consists of radial plots showing the angular 

variation of the heat transfer coefficient on pins from various rows.  In each plot, the flow 

is from left to right.  Local heat transfer coefficients were recorded circumferentially at 

two heights along the pin measured from the endwall, at z = D/8 and z = D/2. From these 

plots it is clear that local heat transfer coefficient is highest on the leading face of the pin.  

This region is defined on each plot by angles between 90 and 270 degrees. Continuing 

beyond this region, heat transfer coefficient drops off dramatically as the flow separates 

from the pin surface. Additionally, the values at the z = D/8 height location are 

significantly lower than those at z = D/2 due to the boundary layer effects from the 

endwall. 
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Figure 19 Circular pin heat transfer coefficient profiles 
 

 The effects of the endwall are further illustrated by plotting average heat 

transfer coefficient development as a function of height along the pin.  Figure 20 shows 

this development for pins in various rows.  As noted before, the heat transfer coefficient 

increases with distance from the endwall and shows a slight increasing trend even at the 
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mid-section of the duct, i.e. at z = D/2. This is consistent with the findings of Sparrow et 

al (Ref. 4) who studied a long isolated cylinder in cross flow to investigate edge effects 

due to the bounding planes of the surface at the ends of the cylinder.  As mentioned 

previously, they concluded that wall-cylinder interactions were confined to within one 

diameter of the wall and decreased heat transfer on the cylinder near the wall when 

compared to regions of the cylinder away from the wall. 
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Figure 20 Circular pin heat transfer coefficient trends 
 

Another interesting observation is that the pins in the second row have the 

highest heat transfer coefficients when compared to pins in the other rows of the array.  

There are two likely contributors to this observation.  First and primarily, the second row 

of pins encounters a higher local velocity than the pins in row 1.  This is due to the 

“nozzle effect” created by the first row of pins as the flow accelerates to provide a 

constant mass flow rate through a reduced cross sectional area.  This accelerated flow 

directly impinges on the second row pins due to the staggered geometry thus significantly 
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increasing heat transfer due to stagnation flow characteristics.  A weaker secondary 

reason is that the turbulence from the first row enhances the heat transfer of the second 

row.  Beyond the second row however there are no additional increases in velocity or 

turbulence level as shown in Figure 21 and Figure 22 since portions of the flow are now 

separated and do not lend to the same stagnation flow type enhancement.   

 

Figure 21 Velocity profile, circular pins 
 

 

Figure 22 Turbulence level, circular pins 
 

Also of interest is the comparison between the pin and endwall heat 

transfer coefficients which has been a topic of much discussion in earlier studies.  Figure 

23 shows a representative case.  Note that in this case the heat transfer coefficients from 

the pins were clearly about 100 – 200% higher than for the endwall.  While this 

magnitude varied for each test configuration, the pin heat transfer coefficient values were 

always found to be higher by about 50-200%. 
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Figure 23 Heat transfer coefficient, circular pins vs. wall 
 

This conclusion is consistent with a majority of the earlier studies that 

have demonstrated a greater heat transfer contribution from the pin surfaces.  

d. Optimization 
One of the goals of this study was to predict optimal heat exchanger 

design configurations that would maximize heat transfer rate while minimizing frictional 

losses in the flow.  As recommended by Kays and London, (Ref. 19) various heat 

exchanger configurations can be readily evaluated and compared by plotting the heat 

transfer coefficient versus friction power on a suitable unit surface area basis.  Such a plot 

is provided in Figure 24.  For clarity, only two configurations showing the extremes of 

heat exchanger performance are shown, and compared with empty duct performance.  All 

other configurations fall between these extremes.  From this chart, it was clear that for all 

of the configurations tested, the case of X/D = 5, S/D =3 provided the greatest heat 

transfer rate per friction power while the case of X/D = 1.25, S/D = 5 was the least 



 33

desirable.  Surprisingly, the empty duct provided performance nearly as good as the least 

favorable pin-fin configuration at higher Reynolds numbers.  This highlights the need for 

careful heat exchanger design in order to verify and fully realize the benefits of using pin-

fins for performance enhancement. 
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Figure 24 Performance comparison, circular pins 
 

It appeared that the relative goodness of each configuration was closely 

related to the volumetric density of available heat transfer surface area, or Aw/V.  Of all 

configurations tested, the optimum array had the third highest area density of 829 m2/m3 

while the worst configuration had the lowest density of 222 m2/m3.   

The significance in the difference in performance of the different 

configurations can be quantified by choosing a specific heat transfer coefficient, and 

comparing the friction power required for each configuration.  Using this measure it was 

found that the least efficient configuration requires up to 15-20 times more friction power 

for the same heat transfer coefficient, i.e. relatively small gains in heat transfer coefficient 

require large increases in friction power.  For example, for the best configuration, 

increasing the heat transfer coefficient from 300 to 450 W/m2K results in friction power 

increases from 3 to 22 W/m2.  In other words, increasing heat transfer coefficient by 50% 



 34

requires over 600% more fluid power.  Careful examination of the slope of these graphs 

can help the designer choose an operating region that provides the best cost/benefit ratio. 

 

e. Application 
The actual performance of these heat exchangers can best be quantified by 

inserting sample initial conditions and calculating predicted performance parameters.  For 

example, assuming a 30K difference between wall and cooling air temperature, the 

optimum configuration transfers 0.7 W/cm2 at ReDh = 3,000 and 4.0 W/cm2 at ReDh 

=50,000. 

While 4.0 W/cm2 is fairly respectable, it is expected that higher rates 

would be attainable by further increasing the area density of these heat exchangers.  Two 

methods for increasing the heat transfer surface area density are reducing the heat 

exchanger size and reducing H/D.  Reducing either size or H/D by a factor of 2 results in 

a doubling of area density.  Numerical studies to quantify the effects of variable size and 

H/D on pin-fin heat exchanger performance were completed and are presented in the next 

sections. 

5. Conclusions 

The objectives of this investigation were met by simulating various pin-fin heat 

exchanger configurations with an experimentally validated three-dimensional finite 

element model.  Specifically: 

1. Comprehensive power function correlations were developed for Nusselt 

number and friction factor accurate to within 5% for all configurations at Reynolds 

numbers between 3,000 and 50,000. 

2. Heat transfer coefficients were found to be 50-200% greater for the pin 

surfaces than for the endwalls. 

3. In terms of the heat transfer coefficient, the configuration that required the 

least amount of fluid friction power was X/D = 5.0, S/D = 3.0 Conversely, X/D = 1.25, 

S/D = 5.0 had the greatest pressure losses. 

4. In all pin-fin array configurations, it was found that small increases in heat 

transfer coefficient resulted in disproportionately large increases in frictional losses thus 

suggesting the presence of a sensitive design operating point. 
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B. CIRCULAR PINS, EFFECTS OF AXIAL PITCH 

In the previous section, the study focused entirely on pin-fin arrays with a fixed 

axial pitch of 12.7 mm.  It was briefly mentioned that reducing axial pitch would increase 

area density and therefore had the potential to improve heat exchanger performance.  

Additionally, it is critical to understand the effects or axial pitch reduction in order to 

extend the results from macroscale experiments to microscale configurations which are of 

ultimate interest. 

1. Test Approach 

a. Test Plan  

The previously defined numerical model was used to study the staggered 

short pin-fin heat exchanger for various configurations and Reynolds numbers.  Table 8 

shows the variables and their values chosen for this study.   

Table 8 Axial pitch test matrix, circular pins 
 

X/D S/D H/D X ReDh 
2 2 1 3-50mm 3,000 – 20,000
2 2 1 0.75–6 mm 50 – 2,000 

1.5 1.5 1 3-50mm 3,000 – 20,000
1.5 1.5 1 0.75–6 mm 50 – 2,000 

 
b. Laminar Modeling 
As mentioned previously, the majority of runs were conducted using the 

standard k-ε turbulence model.  However, since some of the variable axial pitch runs 

included low Reynolds number, laminar modeling was also considered.  Figure 25 shows 

an h vs. E chart for X/D = 1.5, X/D = 1.5 at X = 3mm.  This chart includes numerical 

results obtained with turbulent modeling for Reynolds numbers ranging from 50 to 

20,000 as well as numerical results using laminar modeling for Reynolds numbers 

ranging from 50 to 2000.  The models produced nearly identical results for Reynolds 

numbers in the 1,000 to 2,000 range.  However, below a Reynolds number of 1000, the 

laminar and turbulent solutions were no longer identical.  As Reynolds number was 

decreased, the difference between the two solutions was seen to increase. 

According to ANSYS documentation (Ref. 17) the decision on which type 

of modeling to use can be made by considering the ratio of effective viscosity and 
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laminar viscosity.  In cases where the effective viscosity is less than 5 times greater than 

laminar viscosity, the documentation recommends using a laminar solution.  In this 

application, it was seen that this point occurred near Reynolds number equal to 1000.  

This fact, coupled with the behavior observed in Figure 25, lead to the conclusion that 

laminar modeling should be used for Reynolds number below 1000. 
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Figure 25 Comparison of laminar and turbulent models 

 
2. Results and Discussion 

a. Effects of Axial Pitch on Nusselt Number and Friction Factor 
As shown in Figure 26, the dimensionless quantity Nusselt number 

showed no significant change as axial pitch was varied from the baseline value of 12.7 

mm. As axial pitch was decreased, pin diameter had to be decreased to maintain the 

desired X/D values.  As a result, the inlet velocity was increased to maintain the Reynolds 

number at these smaller hydraulic diameter values.  This resulted in larger heat transfer 
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coefficients.  However, this increase was offset by the smaller hydraulic diameter when 

calculating Nusselt numbers. 

The effect of axial pitch on friction factor is shown in Figure 27.  While 

there are perturbations for the lower Reynolds numbers, there are no indications that 

friction factor is dependent on axial pitch.  These perturbations are likely aberrations in 

the numerical data that are consistent with the level of difficulty achieving convergence 

for these low Reynolds number cases.  

While these trends were expected, it was beneficial to confirm them 

numerically.  The obvious benefit of these results is that data obtained either numerically 

or experimentally for large-scale models may be applied to microscale arrays.  

Additionally, the consistent behavior of the dimensionless qualities further confirmed the 

validity of the numerical model and its ability to provide accurate solutions over a wide 

range of absolute flow velocities. 
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Figure 26 Effect of axial pitch on Nusselt number, circular pins 
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Figure 27 Effect of axial pitch on friction factor, circular pins 

 
b. Performance Comparisons 
As in the previous section, a chart plotting heat transfer coefficient versus 

fluid friction power per wetted area can be made to evaluate heat exchanger performance.  

Here the desired goal is to maximize heat transfer rate while minimizing losses due to 

pressure drop.  Figure 28 depicts h vs. E for the configuration X/D = 1.5, S/D = 1.5 at 

various axial pitches and Reynolds numbers.  The solid lines indicate constant Reynolds 

number with varying axial pitch.  Conversely, the dashed lines indicate constant axial 

pitch with varying Reynolds number. From this figure it is clear that heat transfer 

coefficient and fluid friction power increase as axial pitch decreases and Reynolds 

number increases.  Further, it can be seen that in both all cases, relatively small increases 

in heat transfer coefficient result in large increases in fluid friction power.  A similar 

graph can be prepared for X/D = 2.0, S/D = 2.0 but has been omitted for brevity. 
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Figure 28 Effect of axial pitch on heat exchanger performance, circular pins 

 
Further examination of Figure 28 reveals that it is more “cost effective” to 

enhance heat transfer coefficient through reductions in axial pitch rather than through 

increases in Reynolds number. This is mainly due to the advantages of scale on both heat 

transfer coefficient and fluid friction power.  When holding Reynolds number constant, it 

was observed that heat transfer coefficient varied inversely with axial pitch.  However, 

because pin diameter was directly related to axial pitch for a given configuration, fluid 

friction power was inversely proportional to axial pitch cubed. Combining these trends 

produces the following relationship for heat transfer coefficient and fluid friction power. 

 
 0.33h E∝  (20) 
 

When holding axial pitch constant, it was observed that heat transfer 

coefficient varied with the square root of Reynolds number.  However, fluid friction 
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power varied with the Reynolds number squared. Combining these trends resulted in the 

following relationship. 

 
 0.25

hDh E∝  (21) 

 
Both of the above relationships are consistent with the trends observed in 

Figure 28.  While the differences in the exponents appear to be small, the impact of these 

differences is very significant.  By way of example, consider the line of constant 

Reynolds number = 100 shown in Figure 28.  The furthest point to the right has an axial 

pitch of 0.75 mm and produces a heat transfer coefficient of approximately 370 W/m2K 

at a friction power cost of about 0.2 W/m2.  To  achieve an equivalent heat transfer 

coefficient of this microscale heat exchanger using an array with an axial pitch of 3 mm, 

a Reynolds number of about 2,000 is required which produces a friction power loss of 

approximately 6 W/m2.  Thus, selection of an array that is only 4 times larger results in 

an increase of fluid friction losses by a factor of 30.  

 
3. Conclusions 
The objectives of this phase of the investigation were met by simulating pin-fin 

heat exchanger configurations with various axial pitch values with an experimentally 

validated three-dimensional finite element model.  Specifically it was found that: 

1. Variations in axial pitch were shown to have no appreciable effect on 

Nusselt number and friction factor.  This not only validated the choice of hydraulic 

diameter as a suitable characteristic length but also demonstrated that the results of 

macroscale experiments could be directly applied to microscale heat exchangers. 

2. Reductions in axial pitch can produce a significant increase in heat 

exchanger performance.  In fact, it was shown that reducing axial pitch is more cost 

effective than increasing Reynolds number to improve performance. 
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C. CIRCULAR PINS, EFFECTS OF PIN HEIGHT RATIO 

The purpose of this section is to discuss the effect of pin height ratio on circular 

pin-fin heat exchanger performance.  Variations in pin height ratio, like reductions in 

axial pitch have a large effect on area density.  This phase of the study demonstrates the 

result of these effects. 

1. Test Approach 
The majority of test runs were conducted using a numerical model with pin 

spacing ratio of S/D = X/D =2 and  H/D varying from 0.25 to 4.0. Reynolds number 

ranged from 2,000 to 64,000.  Additional configurations were also run to spot check 

Nusselt number and friction factor correlations developed from this primary test 

configurations and are shown later. 

 
2. Results and Discussion 

Upon completion of the test runs, key data were obtained and Nusselt number and 

friction factor values were calculated for each configuration and Reynolds number.  The 

results of these runs are presented in this section.   

a. Effects of Pin Height Ratio on Nusselt Number 
Figure 29 shows Nusselt number plotted against Reynolds number for 

various H/D configurations of the single pin spacing X/D = S/D = 2.0.  Note that the 

Nusselt number tended to increase as H/D increased from 0.25 to 4.0.  This effect is more 

pronounced at higher Reynolds number.   

This increase was consistent with the geometric differences in the test 

arrays. As H/D increased, hydraulic diameter also increased resulting in lower absolute 

flow velocities for a given Reynolds number.  These lower velocities produced lower 

array averaged heat transfer coefficients.  However, the hydraulic diameter increased at a 

greater rate than the heat transfer coefficient dropped.  As a result, the Nusselt number 

increased.  
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Figure 29 Effect of H/D on Nusselt number, circular pins 

 
Compared to the baseline case of H/D  = 1.0, each variation in H/D acted 

as a magnification factor that depended on Reynolds number and pin height ratio.  It was 

recognized that this amplification factor could be estimated by a power function 

correlation.  By curve fitting these factors, the following magnification relation was 

derived: 

 

0.11
0.5 0.68 1

Re
h

H
D

N D
HA
D

  −  −     =  
 

 (22) 

 
Combining this amplification factor with the previously developed Nusselt 

power function correlation of equations 13 through 15,  results in: 

Re
h h

m
D N DNu C=  (23) 

 
where 

0.05 0.05

0.04 0.04N
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D H D D H
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and 

 
0.13 0.11

0.865 0.68 1S Hm
D D

−     = + −         
 

 
This correlation predicts Nusselt number to within ±30% for 3,000 Re 50,000

hD≤ ≤  
for  1.25 5.0S

D≤ ≤ , 1.25 5.0X
D≤ ≤ and 0.25 4.0H

D≤ ≤  

 
b. Effects of Pin Height Ratio on Friction Factor 
Figure 30 shows friction factor plotted against Reynolds number for all 

H/D configurations tested.  As with Nusselt number, friction factor is magnified as H/D 

increases from 0.25 to 4.0. 

As with Nusselt number, this increase was also consistent with geometric 

characteristics of the test arrays.  Higher H/D resulted in lower flow velocities and 

subsequently less pressure drop for a given Reynolds number.  However, the rate of 

decrease in pressure drop was overcome by the rate of decrease in the square of the 

velocity.  As a result the friction factor increased for higher H/D configurations even 

though pressure loss was dramatically lower than in the lower H/D configurations. 
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Figure 30 H/D effects on friction factor, circular pins 
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As before, it was apparent that a power function correlation would 

adequately represent the magnification of friction factor.  Curve fitting these factors 

resulted in the following amplification equation: 
 

 
0.68

2 0.119 1

exp 0.2 ln ln 2 Re
h

H
D

f D
HA
D

− 
− −  

 
  = −  

   
 (24) 

 
Combining this amplification factor with the previously developed friction 

factor power function correlations  results in: 

 

 Re
h

n
f F Df A C′ =  (25) 

where 
6.37

22.67 ln 1.4F
S XC
D D

−
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and 

 0.085 0.085Sn
D

 = − + 
 

 

for 1.25 2.0S
D

≤ ≤  

and  

 0.25 1.7F
SC
D

 = + 
 

 

and 

 0.041 0.019Sn
D

 = − − 
 

 

for 2.0 5.0S
D

< ≤  

These correlations predict friction factor to within ±30% for 

3,000 Re 50,000
hD≤ ≤  for  1.25 5.0X

D≤ ≤ and 0.25 4.0H
D≤ ≤ . 

Since these correlations were developed based on trends seen in a single 

configuration, it was necessary to validate its ability to predict Nusselt number and 

friction factor over a wide range of configurations and Reynolds numbers.  To 



 45

accomplish this, the configurations listed in Table 9 were run.  The last two columns 

indicate ratios of values predicted by the correlations divided by values obtained 

numerically.  In the majority of cases, the values predicted by the correlations are within 

30% of the numerically obtained values. 
Table 9 Correlation “Spot check” results, circular pins 

 
X/D S/D H/D ReDh Nuc/Num fc/fm 
1.5 1.5 0.25 3,000 1.01 1.02
1.5 1.5 0.25 50,000 1.34 0.67
1.5 1.5 4.0 3,000 0.95 1.14
1.5 5.0 0.25 3,000 0.95 0.95
1.5 5.0 0.25 50,000 1.33 0.65
1.5 5.0 4.0 3,000 0.79 0.96
1.5 5.0 4.0 50,000 1.00 0.75
3.0 5.0 0.25 13,000 1.11 0.75
3.0 5.0 4.0 17,000 0.92 0.79
5.0 1.5 4.0 3,000 0.69 0.73
5.0 1.5 4.0 50,000 1.02 0.87
5.0 2.0 4.0 8,200 0.95 0.99
5.0 5.0 4.0 3,000 0.73 0.85
5.0 5.0 4.0 50,000 0.97 0.58

 
 

c. Combined Effects of Axial Pitch and Pin Height Ratio 
One critical objective of this study was to ensure that heat exchanger 

performance correlations were applicable to microscale designs.  Earlier, it was shown 

that Nusselt number and friction factor were relatively independent of axial pitch at H/D 

= 1.  A spot check was run at S/D = X/D = 5.0 and H/D = 4.0 to demonstrate that these 

important dimensionless parameters remained unchanged as axial pitch was varied.  

Figure 31 and Figure 32 show the results of this investigation.  It was observed that 

Nusselt number was insensitive to changes in axial pitch and friction factor changed by 

less than 15% as axial pitch was varied from 3 to 50 mm.  This finding is important if the 

previously developed correlations are to be used to predict heat exchanger performance in 

microscale applications. 
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Figure 31 Effect of axial pitch on Nusselt number, H/D = 4 
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Figure 32 Effect of axial pitch on friction factor, H/D = 4 



 47

 
d. Performance Comparisons 
In order to determine the effects of variable H/D on heat exchanger 

performance, all configurations tested were plotted as a series of h vs. E curves.  Figure 

33 contains a plot of h vs. E on a wetted area basis while Figure 34 shows h vs. E on a 

face area basis.  On a wetted area basis, heat exchanger performance tended to decrease 

as H/D was increased from 0.25 to 4.0.  This performance decline was mainly due to the 

decrease in area density as pin height ratio increased.  For H/D = 0.25, the area density 

was 11.50 cm2/cm3, while for H/D = 4.0 it decreased to 1.75 cm2/cm3.   
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Figure 33 Effect of H/D on performance, wetted area basis 

 
However, when considering performance based on a face area basis the 

optimum pin height ratio tested was 4.0 despite the fact that this configuration had the 

lowest area density.  This was likely due to two factors.  First, the longer pins presented  
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Figure 34 Effect of H/D on performance, face area basis 
 

increased surface area to provide heat transfer.  Thus a greater amount of heat had to be 

transferred through the heat exchanger footprint thereby increasing the effective heat 

transfer coefficient.  Additionally, it has been shown Sparrow et al (Ref. 4) that the 

presence of the endwall tends to degrade heat transfer coefficient on the pins.  As this 

degrading effect is primarily limited to a distance from the endwall equal to 

approximately one pin diameter, the longer pins would have greater length with a higher 

heat transfer coefficient.  This point is further illustrated in Figure 35 which shows the 

heat transfer coefficient for pins of varying height ratio.  Note that for H/D = 1, only a 

small percentage of the pin length is close to the maximum value of the mid-pin heat 

transfer coefficient.  As pin height ratio increases, a larger percentage of the pin length is 

exposed to maximum heat transfer levels.  Note that H/D = 8 was not part of the test 

matrix but it has been included in this chart to further illustrate the trend. 
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Figure 35 Heat transfer coefficient development on circular pins 

 
Returning to Figure 34, some interesting trends are noted regarding pin 

height ratio effects.  As expected from the previous argument, the configurations H/D = 

2.0 and 1.0 provide considerably less desirable performance than H/D =4.0.  However, 

when pin height ratio is further reduced from 0.5 to 0.25, the trend actually reverses.  In 

this case the increase in area density associated with the smaller pin height ratio has 

overcome the degradation due to wall interaction on the cylinders.   

While these trends were observed for X/D and S/D = 2.0, it was not 

obvious that the same would hold true for other pin spacing such as X/D = S/D = 5.0.  

This configuration was investigated and the results are provided in Figure 36.  In this 

case, the performance of the larger pin height ratio is not significantly different from the 

configuration H/D = 1.0.   As before, the changes in area density are likely the reason for 

these trends.   As shown in Figure 37, this difference in area density is more significant 
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for the widely spaced pin configuration.  For X/D = S/D = 5.0, the area density at H/D = 1 

is significantly higher than it is at H/D = 4.  As a result, the gains in effective heat 

transfer performance achieved through longer pins are matched by the performance gains 

associated with the higher area density of the short pin configuration.  Based on these 

observations, it appears that enhancing heat transfer rates across the face area of pin-fin 

heat exchangers by increasing H/D is more effective for streamwise and spanwise pin 

spacing ratios less than 5.0. 
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Figure 36 H/D effects on performance, wide circular pin spacing 
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Figure 37 H/D and pin spacing effects on area density 
 

e. Effects of Pin Height Ratio on Endwall Heat Transfer 
Coefficient 

It has been shown above that the presence of the endwall has a significant 

effect on the pin heat transfer coefficient profile.  The effect of the pin height ratio on the 

endwall heat transfer coefficient can also be examined using standard CFD post 

processing tools.  Figure 38 shows contour plots indicating endwall heat transfer 

coefficient values for three different pin height ratios.  Note that H/D = 8 was not part of 

the original test matrix but has been included to explore possible trends.  From this figure 

it appears that higher pin height ratios result in greater variations in heat transfer 

coefficient along the endwall especially in the spanwise direction.  This is likely due to 

the greater space available for vortex growth as the cooling air swirls around the longer 

pins.  Additionally, the impact of viscous damping on the wall may be reduced in the 

longer pin configuration. 
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Figure 38 H/D effects on endwall heat transfer coefficient 

 
However, despite the significant local variations in heat transfer 

coefficient seen in long pin configurations, the overall values are not significantly 

different from the short pin case.  Figure 39 shows a comparison of average heat 

exchanger coefficient values for different pin height ratios.  Cooling air inlet velocity was 

held constant for all cases to provide an opportunity to compare absolute values of heat 

transfer coefficient.  A comparison is also made with the empty duct to further illustrate 

the beneficial effect of adding pins to enhance heat transfer rate.  Interestingly, the long 

pin heat transfer coefficient profile tends to behave like the profile seen in the empty 

duct.  Although its average is significantly higher, the long pin heat transfer coefficient 

profile rapidly decreases and then levels out much like the empty duct case.  Also, the 

large variations seen in the contour plots are seen as highly fluctuating absolute values in 

Figure 39.  These actions support the earlier suggestion that longer pin configurations 

have reduced effect from viscous wall damping. 

The three dimensional model provides visibility into the nature of the flow 

in the vicinity of the junction of the pins and endwall.  Figure 40 shows an isometric and 

side view of streamlines in the flow as they pass over the pins.  Note that there is some 

variation of the streamlines in the “z” or pin axis direction.  Presumably this adds to the 

effective transport of heat that is promoted by the presence of the pins. Additionally, the 

streamlines are seen spreading around the pin bases in the vicinity of the wall as the 

vortices are formed. 
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Figure 39 Endwall heat transfer coefficient comparison 

 
Figure 40 Streamline vertical development within pin-fin array 
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f. Optimization 
By combining the effects observed in this study, an optimum theoretical 

heat exchanger configuration can be determined.  The optimum configuration would 

consist of small axial pitch, small H/D, large S/D and X/D and operate at low Reynolds 

number.  Table 10 shows the logical progression as these enhancing features are applied 

starting from a baseline configuration. All configurations compared have S/D and X/D 

held at 5.0.  Within the bounds of this test program, the optimum configuration would be 

defined as X = 0.75 mm, H/D = 0.25, X/D = 5.0 and S/D = 5.0 and would have an area 

density of 525 cm2/cm3. 
 

Table 10 Optimization configurations, circular pin-fin array 
 

Config X (mm) H/D Aw/V 
(cm2/cm3) 

baseline 12.7 1.0 8.1 
min pitch 0.75 1.0 137.1 
min H/D 0.75 0.25 525.8 

 
Figure 41 shows an h vs. E chart that shows the performance of these 

theoretical optimization designs.  As expected the baseline configurations provides the 

worst performance.  Reducing the axial pitch greatly increases the heat exchanger 

performance.  Finally, reducing the pin height ratio results in the best heat exchanger 

performance.  Not surprisingly, the performance of these arrays closely follows area 

density. 

The degree of performance enhancement can be appreciated by comparing 

the optimum configuration with the baseline case.  For example, at a Reynolds number of 

only 50, the optimum configuration produced a heat transfer coefficient of nearly 1000 

W/m2K. The baseline configuration required a Reynolds number of 20,000 to provide the 

same heat transfer performance at a cost of about 300 times the specific fluid friction 

power.  For a 30K temperature difference between cooling air and heat exchanger 

surface, the optimum configuration would transfer 3 W/cm2 at ReDh=50 and 17 W/cm2 at 

ReDh = 1000.  
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Figure 41 Optimization configuration performance, circular pins 
 

However, the optimum theoretical configuration would have an actual 

passage height of only 38 µm and would be highly susceptible to particulate 

contamination.  Typically, turbine engine designers use minimum passage diameters of 8 

– 12 mils or 0.2 to 0.3 mm to reduce the risk of blockage. Even the intermediate 

configuration, H/D = 1, X = 0.75 mm would only have a passage height of 150 µm. With 

this in mind, the theoretical optimum configuration can be modified to achieve required 

clearance. With S/D and X/D held at 5.0, many practical configurations can be defined 

that all have a minimum clearance value of 0.3 mm.  Table 11 shows three of these 

configurations and their associated area density.  These configurations were chosen to 

take advantage of reducing pin height ratio, axial pitch or a balance of both factors. 
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Table 11 Practical optimum configuration options, circular pin-fin array 
 

Conf # X (mm) H/D Aw/V (cm2/cm3) 
P1 0.75 2.0 73.0 
P2 3.0 0.5 66.7 
P3 6.0 0.25 65.6 

 
 

The performance results for these practical configurations are shown in 

Figure 42.  From this chart it is clear that P3 was the best performer among the practical 

heat exchanger configurations.   
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Figure 42 Performance comparison, practical configurations, circular pins 
 

 Figure 43 shows a comparison between the best practical configuration 

and the previously discussed theoretical optimum configuration.  The baseline and 

intermediate configurations are included for reference.  It is important to recall that 
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neither the optimum nor the intermediate configurations were feasible due to 

susceptibility to particulate contamination. 

 Despite the size requirement, this optimum practical configuration 

provided excellent performance from Reynolds numbers ranging from 50 to 2000.  On 

the low end, this configuration had an average heat transfer coefficient of 220 W/m2K 

and required 0.08 W/m2 friction power.  At the high end, this configuration produced an 

average  heat  transfer  coefficient  of  1050 W/m2K  and  incurred  frictional  losses of 43 

W/m2.  On average the optimum practical configuration required over 40 times less 

specific friction power to achieve the same heat transfer coefficient values as the baseline 

configuration. 
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Figure 43 Optimum practical and theoretical configurations, circular pins 
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3. Conclusions 

The objectives of this investigation were met by simulating several pin-fin heat 

exchanger configurations with various pin height ratios with an experimentally validated 

three-dimensional finite element model.  Specifically: 

1. Comprehensive power function correlations were derived to predict Nusselt 

number and friction factor as a function of Reynolds number, X/D, S/D and H/D for 

3,000 Re 50,000
hD≤ ≤ . 

2. Variations in H/D had significant effects on heat exchanger performance.  When 

basing performance on wetted area, reducing H/D was found to be most beneficial due to 

the increase in area density.  However, when basing performance on heat exchanger face 

area or footprint, increasing H/D provided considerable improvements over the baseline 

configurations especially for streamwise and spanwise pin spacing ratios less than five 

times pin diameter.  

3. By combining all factors found to be beneficial in this study, the optimum 

theoretical configuration was X/D = S/D = 5.0, H/D = 0.25, and X = 0.75 mm.  Measuring 

performance on an h vs. E chart, this configuration was shown to match the heat transfer 

rate of the baseline case with 300 times less specific energy loss. 

4. When considering practical limitations imposed by particulate contamination 

susceptibility, the best configuration tested was X/D = S/D = 5.0, H/D = 0.25, and X = 6 

mm.  This configuration had heat transfer coefficients ranging from 220 to 1050 W/m2K 

over a Reynolds number ranging from 50 to 2000 and resulted in over 40 times less 

specific energy loss when compared to the baseline case. 
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D. AIRFOIL-SHAPED PINS 

In this section, the heat transfer and pressure drop characteristics of airfoil-shaped 

pin-fin arrays were investigated using a numerical model.  Having thoroughly examined 

the circular pin configurations, changing pin shape was the next logical step in achieving 

performance improvement. 

1. Numerical Simulation 

a. Modeling 
The model simulated a staggered pin array with 10 rows of airfoil-shaped 

pins, but infinitely wide in spanwise extent.  As with the circular pin model, this infinite 

span condition was numerically achieved by placing “symmetry”, i.e. zero flux 

boundaries on both the spanwise edges of the array as shown in Figure 44.   

 

Figure 44 Infinite width numerical model, airfoil-shaped pins 
 

b. Pin Construction Detail 

The pins were geometrically defined by the intersection of two circular 

cylinders as shown in Figure 45.  By varying the radius of each circle and controlling 

center-to center distance, several airfoil geometries were obtained.  While these two 
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specifications were sufficient to fully define the airfoil shapes, additional parameters 

were used to better characterize the pins as mounted in the test array. These four 

parameters were spanwise ratio (S/D), pin height ratio (H/D), length ratio (LR) and aspect 

ratio (AR).  Figure 46 provides detail on how these parameters are defined.  For 

simplicity, Dy is replaced by D for spanwise and pin height ratios. 

+

+
R

Pin

R

∆Y

 
Figure 45 Airfoil construction 

 
Figure 46 Airfoil-shaped pin dimensions 

 

c. Array Characteristic Length 
The hydraulic diameter definition used for the circular pin phase of study 

was also used for the airfoil-shaped pin-fin array.  This was considered to be a useful 

characteristic length as it would account for differences due to variations in H/D, LR and 

AR. 
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d. Grid Independence 

Meshing was carefully specified to ensure maximum coverage in areas of 

interest such as regions of increased velocity and temperature gradient near the walls as 

shown in Figure 47.  Additionally, mesh density was meticulously scaled to facilitate grid 

independence studies.  The same criteria used to determine grid independence in the 

circular pin study was applied to the airfoil-shaped pin study.  Table 12 provides a 

representative example of a grid independence check for a given configuration.   

Table 12 Airfoil array grid independence, S/D = 3, H/D =1, LR =0.7, AR = 2.0, ReDh = 
5,000 

Parameter Grid 1 Grid 2 Grid 3 
x x y x z 

/pina 
146/19/11 
/13 

158/21/13 
/14 

166x22x15 
/15 

nodes 94K 135K 163K 

Q (W) 1.51 1.52 1.52 

Tout (K) 305.37 305.40 305.40 

m (kg/s) 2.81E-04 2.81E-04 2.81E-04 
 

 
Figure 47 Sample model meshing for airfoil-shaped pin-fin array 
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2. Test Approach 

a. Validation 

The numerical model was previously shown to demonstrate satisfactory 

corroboration with  historical experiments for circular pins-fins.  While the validity of the 

numerical model could be extended to the airfoil-shaped pin-fin array based on this 

corroboration, experiments using actual airfoil-shaped pins were conducted and are 

discussed in a later section. 

b. Test Plan 
A parametric study was devised to investigate the effects of the varying 

S/D, H/D, LR and AR.  In this study, each parameter in turn was varied within the ranges 

shown in Table 13.  When a single parameter was varied, the other three were maintained 

at nominal values.  For each configuration, heat transfer rate and array pressure drop were 

recorded for Reynolds numbers ranging from 3000 to 20000. Based on the trends 

observed, theoretically optimum configurations that combined the best of each parameter 

range were defined and analyzed. 

Table 13 Airfoil numerical test configurations 
 

Parameter Range Nominal Value 
S/D 2 – 5.0 3.0 
H/D 1.0 – 4.0 1.0 
LR 0.5 – 0.9 0.7 
AR 2.4 – 6.2 4.2 

 

3. Results and Discussion 

Upon completion of all the test runs, several key performance indicators were 

examined to understand the heat transfer characteristics and trends for each pin-fin 

configuration and Reynolds number.   

Heat exchanger performance was found to vary significantly as each parameter 

was varied from nominal values.  In the sections that follow, Nusselt number and friction 

factor are presented to show the effects of each parameter. Additionally, overall heat 

exchanger performance was evaluated by plotting heat transfer coefficient versus specific 

fluid friction power on a suitable unit surface area basis. 
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a. Effects of Varying Spanwise Spacing 

The effects of varying S/D from 2.0 to 5.0 on heat exchanger performance 

were investigated during the first phase of the analysis.  For each configuration, H/D = 

1.0, LR = 0.7 and AR = 4.2. 

Figure 48 provides a plot of Nusselt number as a function of Reynolds 

number for various S/D values.  From this chart it is clear that Nusselt number can be 

related to Reynolds number with a power law correlation.  Additionally, decreasing S/D 

has a beneficial effect on Nusselt number. However, as shown in Figure 49, friction 

factor also increases as S/D is decreased.  Both trends are expected as the decreasing S/D 

provides a more tortuous fluid path and decreased effective flow area. 
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Figure 48 Effect of S/D on Nusselt number, airfoil-shaped pins 
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Figure 49 Effect of S/D on friction factor, airfoil-shaped pins 

 
By comparing the configurations on an h vs. E chart as shown in Figure 

50, the overall effects of varying S/D on heat exchanger performance can be determined.  

Here it can be seen that a slight increase in performance can be gained by reducing S/D.  

While the advantage is not overwhelming, it highlights the point that increased heat 

transfer rates associated with smaller S/D outweigh the increase in pressure drop. 

b. Effects of Varying Pin Height Ratio 

Next, the effects of varying H/D from 1.0 to 4.0 on heat exchanger 

performance were studied.  For these configurations, S/D = 3.0, LR = 0.7 and AR = 4.2.   

Figure 51 shows a plot of Nusselt number versus Reynolds number for 

various H/D configurations.  As in the case of variable S/D, Nusselt number appears to 

follow a power law correlation.  However, in this case, the effects of varying H/D are 

more subtle than the effects of variable S/D.  Increasing H/D seems to slightly improve 
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Nusselt number.  The benefits however would likely fall within the bounds of 

experimental uncertainty and are not significant. 
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Figure 50 Effects of S/D on h vs. E (wetted area basis), airfoil-shaped pins 
 

On the other hand, friction factor has a much stronger dependence on pin 

height ratio.  As shown in Figure 52, friction factor increases as H/D decreases.  This 

trend is mainly due to the geometric differences in the test array.  While pressure drop 

decreased as H/D increased, the square of the required average flow velocity to achieve a 

given Reynolds numbers decreased more rapidly resulting in higher friction factors.  This 

decrease in velocity was due to the increase in hydraulic diameter as H/D was increased. 
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Figure 51 Effects of H/D on Nusselt number, airfoil-shaped pins 
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Figure 52 Effects of H/D on friction factor, airfoil-shaped pins 
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In order to evaluate the impact of these trends on overall heat exchanger 

performance, an h vs. E chart is shown in Figure 53.  When based on wetted area, 

performance is seen to improve as H/D is decreased.  However, when based on face area 

as shown in Figure 54, an opposite trend is observed.  In this case, performance is better 

for higher pin ratios.  This enhancement is mainly due to the increased surface area 

provided by the longer pins and the reduced impact on pin heat transfer coefficient due to 

endwall effects.  The greater heat rate must be transferred through the heat exchanger 

endwall face.  In theory, longer pins would provide even more performance.  However, 

due to manufacturing and operating constraints, pin height ratios greater than 4.0 are not 

considered representative of cooling schemes employed in turbine blades. 
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Figure 53 Effect of H/D on h vs. E (wetted area basis), airfoil-shaped pins 
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Figure 54 Effect of H/D on h vs. E (face area basis), airfoil-shaped pins 
 

c. Effects of Varying Pin-fin Length Ratio 
The effects of varying LR from 0.5 to 0.9 on heat exchanger performance 

were examined.  For each configuration, S/D = 3.0, H/D = 1.0 and AR = 4.2. 

Figure 55 and Figure 56 show plots of Nusselt number and friction factor 

versus Reynolds number for various pin length ratios.  Showing consistent and orderly 

trends, both Nusselt number and friction factor increase as LR is decreased. As before, 

these effects are mainly due to changes in average flow velocity required to achieve 

desired Reynolds number.  As length ratio decreases, hydraulic diameter also decreases 

resulting in higher average velocity.  Also, pressure drop increases more  rapidly than the 

square of the velocity.  Thus, the friction factor tends to increase. 
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Figure 55 Effects of length ratio on Nusselt number, airfoil-shaped pins 

 
 

Figure 56 Effect of length ratio on friction factor, airfoil-shaped pins 
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The overall effect of LR on heat exchanger performance is realized by 

examining the h vs. E plot shown in Figure 57.  From this chart it is evident that the 

increase in heat transfer rate outweighs the increases in pressure drop as LR is reduced.  

Thus reducing pin length ratio improves heat exchanger performance. 

 
 

Figure 57 Effect of length ratio on h vs. E (wetted area basis), airfoil-shaped pins 
 

d. Effects of Varying Pin-fin Aspect Ratio 
Finally, the effects of varying aspect ratio from 2.4 to 6.2 on the 

performance of the heat exchanger were investigated.  For these configurations, S/D = 

3.0, H/D = 1.0 and LR = 0.7. 

Figure 58 shows a plot of Nusselt number versus Reynolds number for 

each AR variation tested.  Interestingly, there is no significant effect on Nusselt number 

as AR is changed.  In these cases, the array averaged heat transfer coefficient increases as 

AR increases but is offset by hydraulic diameter which decreases at the same rate.  

Friction factor, on the other hand, is heavily dependent on AR.  From Figure 59, it is clear  
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Figure 58 Effects of aspect ratio on Nusselt number, airfoil-shaped pins 

 
 

Figure 59 Effects of aspect ratio on friction factor, airfoil-shaped pins 
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that friction factor decreases as aspect ratio increases.  As increased aspect ratio gives the 

pins a sleeker appearance relative to the flow direction, this reduction in friction factor is 

expected.  As aspect ratio is increased, flow separation is reduced and overall pressure 

drop is dramatically decreased. 

Figure 60 provides a plot of h vs. E for the variable AR ratio runs.  It 

confirms the expectation that the sleeker or higher aspect ratio pins provide improved 

performance when compared to low aspect ratio pins. 

 
Figure 60 Effect of aspect ratio on h vs. E (wetted area basis), airfoil-shaped pins 

 
In summary, the four basic defining parameters had a significant effect on 

heat exchanger performance.  Decreasing S/D, H/D, LR and increasing AR were all 

beneficial with respect to performance based on wetted area.  For performance based on 

face area, the only difference was that increasing H/D was most beneficial.  Interestingly, 

these trends can be linked to changes in area density, that is, surface area per unit volume.  

Figure 61 shows the effect on area density as each of the four parameters was 
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independently varied from the baseline configuration.  It can be observed that trends in 

heat exchanger performance directly follow area density.  Note that area density, like 

performance, increases as S/D, H/D and LR are reduced.  Conversely, area density and 

heat exchanger performance increase as AR increases.  This linkage can provide helpful 

clues to the heat exchanger designer for preliminary development phases. 
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Figure 61 Area density trends for airfoil-shaped pin-fin arrays 

 
Taking advantage of observed performance trends for each of the four 

defining parameters, it is possible to predict the configuration of an optimum heat 

exchanger within the limits of the test matrix.  Such a heat exchanger would have S/D = 

2.0, LR = 0.5 and AR = 6.2.  Depending on whether performance was based on wetted 

area or face area would dictate the selection of H/D.  For wetted area basis, minimizing 

H/D would be most beneficial whereas for face area basis, maximum H/D would be 

selected. 
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e. Size Effects 

Taking the development one step further, the optimum configuration can 

be further improved by taking advantage of scale.  Figure 62 and Figure 63 show that 

Nusselt number and friction factor are essentially independent of array size.  This is 

important for two reasons. First, as hydraulic diameter is reduced, heat transfer 

coefficient must increase to maintain Nusselt number. Thus heat transfer rates can be 

enhanced by decreasing the axial pitch of an array.  Secondly, the results obtained when 

testing macroscale heat exchanger arrays can be directly applied to microscale designs. 
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Figure 62 Effect of axial pitch on Nusselt number, airfoil-shaped pins 
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Figure 63 Effect of axial pitch on friction factor, airfoil-shaped pins 
 

f. Optimization 
While size reductions improve heat transfer rate, heat exchanger 

dimensions must include practical limits. Typically, turbine blade designers use a 

minimum passage size of 8 – 12 mils to prevent clogging from airborne particles.  Using 

a minimum clearance of 0.3 mm one feasible configuration was S/D = 2, H/D = 1, LR = 

0.5 and AR = 6.2 with an axial pitch of 3.75 mm. Area density for this configuration was 

71.5 cm2/cm3.  For this configuration, both passage height and interpin clearance was 0.3 

mm.  Another possible configuration would be S/D = 2, H/D = 0.5, LR = 0.5 and AR = 

6.2 with an axial pitch of 7.5 mm yielding an area density of 63 cm2/cm3.  To improve 

performance on a face area basis, the H/D could be raised to 4.0 for either case.  

Numerical simulations indicated that both configurations had nearly identical 

performance.  Figure 64 shows an h vs. E plot for an optimum configuration based on 

wetted area.  For the sake of comparison, a theoretical worst case, S/D = 5, H/D = 4, LR = 

0.9 and AR = 2.4 is plotted to demonstrate the impact of a poor design.  Finally, the 
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optimum and worst-case circular pin configurations from the previous section are 

included to illustrate the advantage gained by switching to the airfoil-shaped pins.   
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Figure 64 Optimum configuration comparison, airfoil-shaped pins vs. circular pins 

 
Note that in both the best and worst cases, the airfoil-shaped pins provide 

greater performance advantage as Reynolds number is increased.  This is likely due to the 

increased importance of the airfoil shape at higher Reynolds number.  Figure 65 shows 

numerically obtained streamline plots for both the airfoil and circularly shaped pins. Both 

pins were in the second row of an array for operating at a Reynolds number of 20,000.  

The airfoil shape tends to minimize boundary layer separation thereby reducing pressure 

drag when compared to circular pins. Since the pressure drag on the pins increases 

proportionally to the square of the flow velocity, the difference in friction power 

associated with the circular pins grows exponentially. 
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Figure 65 Numerical pin-fin streamline comparison, ReDh = 20,000 
 

In addition to reducing pressure drag, the delayed boundary layer 

separation on the airfoil-shaped pins also provides a heat transfer advantage.  Figure 66 

shows a numerically generated comparison of normalized heat transfer coefficient on the 

surface of an airfoil-shaped pin and a circular pin.  Note that the heat transfer coefficient 

drops off rapidly on the circular pin as the flow approaches 90 degrees on either side of 

pin.  In contrast, the heat transfer coefficient on the airfoil-shaped pin maintains a higher 

value for an additional 30 – 40 degrees.  Note also that the normalized heat transfer 

coefficient on the leading edge of the airfoil is significantly greater than it is for the 

circular pin.  The actual value in this case was nearly 22 times the average heat transfer 

coefficient on the pin.  This was likely due to the sharp leading edge.  In this region, the 

boundary layer is extremely thin while the flow velocity is very high.  These factors 

combine to yield extremely high local heat transfer coefficients.  The graph was not 

scaled to include this portion in order to ensure adequate resolution for characterization 

of the separation point. 
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Figure 66 Local heat transfer coefficient comparison 

 
The advantage gained by switching to the airfoil shape can be realized by 

comparing the frictional losses between the two optimum configurations of each pin 

shape for a desired heat transfer coefficient.  Table 14 displays the comparison between 

the optimum airfoil-shaped pin array and the optimal circular pin-fin array that was 

defined as S/D = 5, X/D = 5, H/D = 0.25 and X = 6 mm.  With an area density of 65.6 

cm2/cm3, the circular pin-fin array closely matched the scale of the airfoil-shaped pin 

array.  The second column in the table shows the heat transfer coefficient produced by 

both configurations. Finally the specific fluid friction power required by each 

configuration is compared.  In all cases, the airfoil-shaped pin array requires less power 

to produce the desired heat transfer coefficient.  Additionally, the relative gains afforded 

by the airfoil design increase at higher Reynolds number.  Over the range tested, the 

advantage  of  switching  to  the  airfoil  shapes  varies  from  15  to  71%.  At  the highest 
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Reynolds number used in this comparison, the circular pin-fin array requires more than 

three times the fluid power to produce the same heat transfer coefficient as the airfoil-

shaped pin array.  

 

Table 14 Performance comparison between circular and airfoil-shaped pin-fin arrays 
 

ReDh (airfoil) h (W/m2K) Ecircular (W/m2) Eairfoil(W/m2) % decrease in E

330 220 0.082 0.070 15 

900 450 1.45 0.085 41 

1500 700 7.79 3.97 49 

2700 1050 42.8 16.9 60 

4650 1600 241 70.7 71 

 

4. Conclusions 
The objectives of this investigation were met by simulating various airfoil-shaped 

pin-fin heat exchanger configurations with an experimentally validated three-dimensional 

finite element model.  The performance of the airfoil-shaped pin-fin array was found to 

be superior when compared to similarly scaled circular pin-fin arrays.  This performance 

increase was mainly due to the streamlined nature of the airfoil shape which was shown 

to delay flow separation from the pins in the array.  This not only reduced pressure drag, 

but also increased effective heat transfer surface area on the airfoil-shaped pins.  

Four defining parameters of the airfoil-shaped pins, span wise width ratio, pin 

height ratio, pin length ratio and aspect ratio were varied with a numerical model and the 

effects on heat transfer and pressure drop were explored. The effects of these variations 

tended to follow basic geometric principles.  That is, parameter changes that increased 

the area density of an array enhanced overall performance based on heat transfer 

coefficient and fluid friction power when compared to those changes that reduced area 

density.  Specifically: 

 1. Decreasing S/D was found to increase both Nusselt number and friction 
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factor over the entire Reynolds number range tested.  Although friction factor was 

increased, overall performance was enhanced by reducing span wise pin ratio. 

2. Increasing H/D was found to have little effect on Nusselt number but 

significantly increased friction factor.  The increase in friction factor was due to the 

geometry change as pin height ratio increased. That is, increasing H/D caused hydraulic 

diameter to increase significantly thereby reducing average velocity requirement for a 

given Reynolds number.  Thus friction factor increased.  The overall impact of changes in 

H/D depended on whether wetted area or face area was used as a performance basis.  

Reducing H/D improved performance on a wetted area basis.  Conversely, increasing 

H/D enhanced performance based on face area which may be important for cooling 

electronic components.  

3. As in the case of pin height ratio, changes in pin length ratio significantly 

affected hydraulic diameter and thus affected Nusselt number and friction factor.  

Reducing length ratio increased both Nusselt number and friction factor.  Overall 

performance was also enhanced when length ratio was reduced. 

4. Pin aspect ratio was the only parameter that had an opposite effect on area 

density and overall performance.  When aspect ratio was increased, friction factor was 

reduced as the pins became more streamlined.  No significant changes occurred in 

Nusselt number so overall performance was improved as aspect ratio was increased. 

5. By combining the factors shown to improve performance into one design, 

an optimum configuration was developed.  Sized to resist particulate contamination, the 

optimum configuration was S/D =2, H/D = 0.5, LR = 0.5, AR = 6.3 and X = 6 mm.  

Compared to a circular pin configuration with approximately the same area density, the 

airfoil-shaped pin-fin array much lower frictional losses to maintain a given heat transfer 

coefficient.  The advantage of the airfoil-shaped pin array grew from 15 to 71% as 

Reynolds number was increased from 330 to 4650.  
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III. EXPERIMENTAL ANALYSIS 
 

A. OVERVIEW 
This section covers the experimental testing completed to support the numerical 

analysis presented in the previous sections.  Up to this point, the numerical model had 

only been validated against historical data from Metzger et al. (Ref. 5) and Arora (Ref. 

11).  Based on these comparisons, the model was found to be in excellent agreement with 

experimental heat transfer data.  Friction factor predictions were not as accurate but were 

considered useful for determining trends between various pin-fin array configurations. 

No experimental data were available to validate the airfoil-shaped pins.  In this section, 

experimental testing of three circular and one airfoil-shaped pin-fin array will be 

discussed.  

B. EXPERIMENTAL SETUP 

1. Experimental Apparatus 
The experimental rig consisted of a rectangular entrance duct, pin-fin test array, 

mixing chamber and exit duct.  Airflow was driven by a two-stage regenerative blower 

mounted at the end of the exit duct. A schematic of the test apparatus layout is shown in  

Figure 67.  

The entrance duct was constructed of plexiglass and measured three meters in 

length to ensure a fully developed velocity profile at the test section.  The inner 

dimensions of the duct were 33 mm x 250 mm to match the test section. The duct was 

open to ambient air and was fitted with a screen to prevent debris from entering the test 

section and fouling the downstream blower.  All duct joints were carefully constructed to 

maintain airtight integrity and present a smooth surface to the incoming air thereby 

preventing flow disturbances. 

The test section was comprised of 10 separate sections of pins.  Figure 68  shows 

test section construction detail.  Each section or row consisted of aluminum pin-fins 

mounted with screws between two aluminum plates material measuring 12 mm x 50 mm 

x 250 mm..  Each section was thermally insulated from the adjacent section by 1 mm 

plexiglass strips to facilitate independent row-by-row heat transfer analysis.  The 

adiabatic sidewalls were made of 12 mm thick plexiglass and permitted excellent 
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Figure 67 Experimental apparatus schematic 

 
visibility into the test array.  As with the entrance duct, care was taken to minimize flow 

disturbances caused by uneven endwall alignment.  Additionally, rubber gasket material 

was used in all joints to prevent air leaks in the test array.  Using a smoke generator, all 

leaks were revealed and subsequently corrected before testing was conducted. 

 
Figure 68 Test section detailed diagram 

 
For some of the testing, two different mechanical turbulence generators were 

installed immediately prior to the test section.  One consisted of wide metallic strips and 

the other was a standard screen mesh.  Figure 69 shows photographs of these generators. 

Flexible electric heating elements were bonded to the endwalls using a thermal 

adhesive.  Rated at 50W each, these heaters were designed to meet the heating 

requirements for the entire Reynolds number range to be tested.  A simple program was 

written to provide automatic on/off control of these heaters to maintain desired endwall 

temperature and to record total heat rate based on electrical energy requirements.  As a 
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Figure 69 Turbulence generators, coarse (left) and fine (right) 

 
backup means of measuring total heat flux, an in-line wattmeter was used to provide an 

additional source for measuring electrical power supplied to the strip heaters. Wall 

temperature of each section was indicated by thermocouples mounted in grooves 

machined into the endwalls. For this application, the thick aluminum plate served to 

provide adequate thermal inertia to promote an even temperature distribution spatially 

and temporally throughout the endwall. 

Other instrumentation measured air temperature, pressure and velocity.  Air 

temperature was recorded using a single thermocouple at the entry duct inlet and four 

thermocouples at the end of the insulated mixing chamber.  Air pressure was recorded at 

the test section inlet and exit.  Airflow was measured using a turbine flowmeter. Flow 

velocity was controlled using relief valves mounted between the blower and the airflow 

meter and by placing filters on the inlet.  Further details of the experimental configuration 

can be found in Ref. 20, and photographs of some of the equipment are shown in 

Appendix D. 
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2. Experimental Method 

Test procedures were consistently and methodically executed to ensure reliable 

data quality.  At the start of each test period, ambient atmospheric pressure was recorded 

using NOAA data from a nearby airport located at the same altitude as the laboratory.  

Next, the strip heaters were energized and set to maintain desired wall temperature.  

Before turning on the blower, heater energy was measured to calculate heat losses to the 

environment.  Finally the blower was activated and various bleed valve and entry filter 

combinations were used to achieve desired flow rates.  Steady state conditions were 

achieved when heat exchanger outlet temperatures remained constant.  Streaming data 

were recorded in a spreadsheet format and included individual wall temperatures, cooling 

air inlet temp, outlet air temperature and pressure, turbine flowmeter output and pressure 

drop across the array.  Data were recorded for 20 minute periods to ensure sufficient data 

sampling.    

a. Array Characteristic Length 

For consistency, volume-based hydraulic diameter was used for the 

experimental testing as it had been for the numerical analysis. 

b. Test Matrix 
Several configurations of pin-fin arrays were chosen for testing as shown 

in Table 15.  Both experimental and numerical runs were completed with each 

configuration. These configurations were chosen to provide a sample of data points 

applicable to each of the major numerical analysis categories previously completed.  

Additionally, pin dimensions were selected to ensure compatibility with the common test 

section and ducting to reduce setup time and cost.  Each configuration was tested with a 6 

and 12 degree C temperature difference between wall temperature and cooling air 

temperature  and had an axial pitch of 50 mm.  Finally, each configuration was also tested 

with and without turbulence generators installed immediately upstream of the test section 

to qualitatively characterize the effects of turbulence intensity on heat exchanger 

performance.   
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Table 15 Experimental and numerical test configurations, ReDh = 5,000 – 45,000 
 

Circular Pin Configurations 
Diameter S/D X/D H/D 
33.0 mm 1.5 1.5 1.0 
16.5 mm 3.0 3.0 2.0 
10.0 mm 5.0 5.0 3.33 

Airfoil Pin Configuration 
S/D H/D LR AR 
3.67 2.44 0.9 3.30 

 

3. Data Reduction 

Once the raw data were acquired, a MATLAB program was used to calculate 

desired output quantities.    The following steps were followed to calculate the test array 

Nusselt number and friction factor. 

a. Nusselt Number 
Total heat transfer rate and mass flow rate were recorded directly from the 

instrumentation and data acquisition system. 

Outlet bulk temperature was calculated from a simple energy balance as: 

 out in
p

QT T
m C

= +  (26) 

As a check, this outlet temperature was compared with the outlet bulk 

temperature obtained by averaging the results of the four thermocouples located in the 

mixing chamber.  In most cases, the temperatures were identical.  If the temperatures 

differed by more than 0.1 K, then the run was repeated. With output temperature 

resolved, the log mean temperature difference was calculated over the test array as 

follows: 
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wall in wall out
lm

wall in

wall out

T Tbulk T Tbulk
T

T Tbulk
T Tbulk

− − −
∆ =

 −
 − 

 

The heat transfer coefficient was calculated using the following equation: 

 array
wetted lm

Qh
A T

=
∆

 

Finally, the Nusselt number for the array was determined using: 
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Additionally, due to the independent nature of the modular heated 

sections, row-by-row temperature profile was obtained through a simple energy balance.  

From this, row-by-row Nusselt number development was derived. 

b. Friction Factor 
The friction factor in the array was calculated using the following 

definition: 21
2

array hP D
f

U Lρ
∆

′ =  

where L was the overall streamwise length of the array. 

4. Uncertainty Analysis 
Experimental uncertainty was estimated using the method of Kline and 

McClintock (Ref. 21) for Nusselt number, friction factor and Reynolds number.  Due to 

the wide range of Reynolds numbers tested, the relative uncertainty values also cover a 

wide range.  Table 16 shows these estimated values for each parameter. For Reynolds 

number and friction factor, the greatest uncertainty occurred at the lowest Reynolds 

number and the smallest uncertainty occurred at the high Reynolds numbers. Of 

particular note is the high uncertainty values for the airfoil-shaped pins.  This was 

primarily due to the difficulty associated with measuring the extremely low pressure drop 

across the array at the lowest Reynolds number tested even with an inclined manometer. 

Details on the uncertainty analysis are provided in Appendix E. 

Table 16 Experimental Uncertainty 
 

Parameter Relative Uncertainty (%) 

ReDh (5,000 – 45,000) 4.9 – 1.9 

NuDh (∆T = 6K) 8.3 

NuDh (∆T = 12K) 4.2 

Friction factor (33 mm pins) 3.3 - 0.62 

Friction factor(16.5 mm pins) 3.4 – 0.64 

Friction factor(10 mm pins) 20.0 – 0.68 

Friction factor (airfoil pins) 25 - 0.78 
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C. EXPERIMENTAL RESULTS 

Upon completion of the test runs, the experimental results were compared with 

data obtained from the numerical model.  As discussed previously, the numerical models 

were used to develop Nusselt number and friction factor correlations as a function of 

Reynolds number.  Additionally, heat transfer coefficient was plotted against fluid 

friction power as a key performance metric.  In this section, results from each 

experimental configuration are matched with the corresponding numerical results to 

provide a means for evaluating the model validity.   

1. Nusselt Number 
Figure 70 shows Nusselt number results for each of the pin configurations.  Note 

that in most cases there is excellent agreement between the numerical and experimental 

results for the mid to low range Reynolds numbers.  However, for Reynolds numbers 

above 20,000, the numerical model tends to result in higher Nusselt number values when 

compared to the experimental data.  The largest difference noted was 18%.  There are at 

least two possible reasons for this difference.  

The first cause may be due to contact resistance between the endwall and pin-fins 

in the experimental rig.  In the numerical model, both the endwall and pin-fin surfaces 

were maintained at the same temperature for all runs.  However, in the experimental rig, 

the pin-fins are heated indirectly by the strip heaters via conduction through the endwalls.  

At the lower Reynolds numbers, the pin-fins are able to maintain desired temperature as 

the heat flux requirement is relatively small.  However, at the higher Reynolds numbers, 

the small yet finite contact resistance results in a slightly lower pin temperature when 

compared to the endwall.  This difference in temperature can result in lower Nusselt 

numbers than predicted by the numerical model. 

The second reason may be due to inaccuracies in the numerical solution at higher 

Reynolds numbers.  Although turbulence models are generally more accurate at high 

Reynolds number, they often have difficulties characterizing regions of flow recirculation 

such as those that would form behind the pin-fins in the test array.  Additionally, there 

may be problems in accurately depicting points of flow separation from the pins. It is 

reasonable to consider that inaccuracies arising from poor characterization of these 

regions would be magnified as flow velocity increased. 
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However, despite the differences noted, the agreement between the numerical 

model and the experimental results were considered satisfactory and within the bounds of 

experimental uncertainty. 
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Figure 70 Model validation, Nusselt number 

 
Due to the ability to heat each row independently, it is possible to resolve row-by-

row local Nusselt number.  Figure 71 and Figure 72 show local Nusselt number plotted 

for each row of pins. Both figures show the 33 mm  pin configuration.  In both cases, the 

Nusselt number quickly climbs to maximum value by the third row.  However, Nusselt 

number decreases rapidly in Figure 71 similar to the heat transfer coefficient trends seen 

in the numerical case represented by Figure 23.  However, in Figure 72, the Nusselt 

number remains high after the third row.  This may be due to the increased turbulent 

energy present in the higher speed flow.  The numerical model also showed this type of 

level Nusselt development curve at high flow velocities. These similarities increased 

confidence in the numerical model’s ability to characterize the heat transfer 

characteristics of the pin-fin heat exchanger. 
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Figure 71 Nusselt number development, ReDh = 8,500 
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Figure 72 Nusselt number development, ReDh = 30,000 
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2. Friction Factor 
Figure 73 shows the comparison between friction factor for the experimental and 

numerical runs for each configuration.  For the 33 mm diameter circular pin-fin array, the 

numerical model overestimates the friction factor by up to 50%.  In the case of the 

smaller circular pins and airfoil-shaped pins, the agreement is much better.  However, in 

all cases except for the 10 mm pins, the numerical solution and experimental results 

appear to diverge as Reynolds number increases.  This difference at high Reynolds 

number is consistent with the trends observed above with Nusselt number. Unlike the 

heat transfer solution however, only the aforementioned concern with the numerical 

modeling of the recirculation zone is relevant. 
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Figure 73 Model validation, friction factor 

 
In fact, possible difficulties in numerically characterizing the recirculation zones 

or flow separation points are reasonable considering the trends observed with friction 

factor.  The size of the recirculation zones relative to the open volume would be greater 
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for the larger pins than for the small circular or airfoil-shaped pins. Additionally, these 

zones would have a greater impact at higher Reynolds number for all configurations.  

These same trends were observed in the earlier comparison with the experimental results 

of Arora (Ref. 11). 

Further evidence of premature flow separation can be seen in the numerical 

solution. In the previous section, a numerically derived plot of normalized heat transfer 

coefficient development on both a circular and airfoil-shaped pin-fin were shown as 

Figure 66.  Here, the heat transfer coefficient appeared to drop off at 80 - 85 degrees from 

the leading edge of the circular pin which is indicative of flow separation.  This 

separation point is significantly earlier than the typically accepted value for turbulent 

flow of approximately 110 - 120 degrees as found in elementary fluid mechanics 

textbooks such as White (Ref. 22).  As a result of the earlier separation, the low pressure 

recirculation zone or wake is likely larger for the numerical solution than it is for the 

experimental case. This would cause higher pressure drop and subsequently higher 

friction factors for the circular pins.  

For the airfoil-shaped pins, there is very little separation and the recirculation 

zone is not as significant as it was for the circular pin case.  As this zone is relatively 

small, its contribution to the total pressure drop in the array is also small.  As a result, 

errors associated with the numerical solution are also not very significant.  As a result, 

there is significantly better corroboration with the experimental solution. 

Despite the problems with accurately predicting the pressure drop for the large 

diameter circular pin array, the numerical model was still considered useful in showing 

trends between different configurations.  In Figure 74, two plots of friction factors are 

shown for all configurations.  One chart includes only numerical results and the other 

only shows experimental results.  Although the numerical model overestimates the large 

pin friction factor, it can be seen that the experimental trends are properly predicted. 



 92

10
4

10
5

10
-1

10
0

10
1

ReDh

f

Numerical results

33 mm pin
16.5 mm pin
10 mm pin
airfoil pin

10
4

10
5

10
-1

10
0

10
1

ReDh

f

Experimental results

33 mm pin
16.5 mm pin
10 mm pin
airfoil pin

 
Figure 74 Friction factor trends between configurations 
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3. Performance Comparisons 

Plots of heat transfer coefficient versus specific fluid friction power provide a 

very useful metric in determining the performance of heat exchanger.  These charts 

illustrate the “cost” of a given configuration to transfer heat.  Figure 75 shows these 

performance charts for each configuration using data from the numerical and 

experimental runs.  Note that despite the previously identified differences in friction 

factor seen with the circular pins, the h vs. E curves show good agreement between 

numerical and experimental results.  This is likely due to the fact that the model tends to 

overestimate both Nusselt number and pressure drop at the higher Reynolds numbers.  

These errors are effectively canceled since the higher heat transfer coefficient appears to 

“cost” more in terms of fluid friction power.  This causes the numerical performance 

curve to shift slightly up and to the right compared to the experimental data for the same 

Reynolds number range. These slight differences did not impair the model’s utility in 

comparing the relative performance between configurations.   
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Figure 75 Model validation, overall performance 
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4. Effect of Turbulence Generators 
A qualitative evaluation of the effect of turbulence generators was conducted and 

the results are shown in this section.  Figure 76 shows the effects of the turbulence 

generators on each pin-fin type.  For the circular pins, there was no noticeable difference 

in Nusselt number when the turbulence generators were installed.  However, the 

turbulence generators increased Nusselt number in the airfoil-shaped pin-fin array by 35 

– 50%.  This difference is likely due to the difference in flow characteristics between 

these configurations.  With the circular pins, there is already a high level of turbulence 

within the array once the flow gets past the first or second row.  Therefore introducing 

additional turbulence upstream of the array has little effect on the already highly 

turbulent flow situation.  However, in the case of the airfoil-shaped pins, the flow 

naturally has a lower turbulence level as the path is not as tortuous as it is in the circular  
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Figure 76 Effect of turbulence generators on Nusselt number 
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pin case.  As a result, introducing upstream disturbances significantly increases 

turbulence intensity within the array yielding an enhanced heat transfer rate.  It is 

interesting to note that there was little difference in Nusselt number between the coarse 

and fine turbulence generators for the airfoil-shaped pins.  This suggests a turbulence 

threshold beyond which there is little benefit in creating larger flow disturbances. 

While the introduction of the turbulence generators affected the experimental 

results, no similarities were observed in the numerical model.  Increasing turbulence 

intensity in the numerical model had no significant effect on the heat transfer rate or 

pressure drop.  This suggests one of two possibilities.  First, like the circular pin 

experimental case, the background turbulence in the numerical airfoil-shaped pin model 

may have been sufficiently high such that increased turbulence intensity had little or no 

effect.  Second, the level of turbulent intensity achieved numerically may have been 

much lower and not representative of the level attained by the turbulence generators in 

the experiment. In either case, the previous section detailing the numerical analysis of the 

airfoil-shaped pins covers a nominal situation in which the flow, although turbulent, is 

relatively undisturbed as it enters the array. In a representative application like turbine 

blade cooling, the flow would likely be much more disturbed.  Based on the experimental 

impact of the turbulence generators, actual heat transfer rates for installed airfoil-shaped 

pin-fin arrays may be even greater than predicted by the results of this numerical work. 

Unfortunately, due to the configuration of this experiment, no meaningful data 

could be obtained to evaluate the effects of turbulence generators on friction factor.  This 

was because the turbulence generators were located between the entry pressure tap and 

the test array.  Thus recorded pressure drop would have included the turbulence 

generators rather than just the test array. 

 
D. CONCLUSIONS 

The objectives of this phase of testing were met by comparing heat transfer and 

pressure drop results obtained by the numerical model with data recorded from various 

pin configurations mounted in an experimental rig.  Several findings were: 
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1. The numerical simulation modeled the heat transfer characteristics of the 

circular and airfoil pin-fin arrays over a Reynolds number range of 5,000 to 45,000 to 

within 18%. 

2. The numerical model overestimated friction factor by up to 50% for the 33 

mm circular pin array but was much closer for the 16.5 mm and 10 mm circular pin and 

airfoil-shaped pin arrays.  These differences may have been due to shortcomings in the 

simulation’s ability to properly model flow separation and areas of recirculation. In most 

cases, the numerically obtained friction factor tended to diverge from the experimental 

results at higher Reynolds number. 

3. Despite shortcomings in characterizing absolute friction factor, the 

numerical model was useful for discriminating between configurations since relative 

friction factor values were consistent. 

4. Overall heat exchange performance based on heat transfer coefficient and 

fluid friction power was characterized closely by the numerical model for all 

configurations.   

5. The introduction of turbulence generators in the experimental rig 

increased Nusselt number by 35-50% for the airfoil-shaped pin-fin array.  No significant 

changes were noted for the circular pin arrays.  This was likely due to the fact that the 

circular pin arrays were already operating at high turbulence intensity due to the tortuous 

nature of the flow around the pin-fins. 

6. The numerical model was not affected by the introduction of additional 

turbulence.  This suggests that the airfoil-shaped pin array may perform even better than 

predicted in a real-world environment.  
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IV. CONCLUSIONS 

Due to the modular nature of this study, specific conclusions have already been 

discussed at the end of each major section/chapter.  However, this section shall be used to 

review the significant findings of this work as an entity and capture the main concepts in 

summary form. 

The major contributions of this study were to advance knowledge in the growing 

field of microscale heat exchanger technology and to develop innovative ways of 

improving heat transfer performance in the staggered cross pin-fin heat exchanger.  The 

major objective of this work was met by successfully simulating the pin-fin heat 

exchanger with a 3-D numerical model and using it to investigate a wide range of 

configurations, Reynolds numbers, array sizes, pin height ratios and pin shapes.  The 

model was validated with historical and current experimental data.  It consistently 

predicted Nusselt number for all configurations tested within 18% but was found to have 

some shortcomings in predicting friction factor.  Despite these shortcomings, it provided 

a reliable measure of overall heat exchanger performance. 

The model demonstrated the advantages of reducing axial pitch to achieve 

superior heat exchanger performance within the limits of particulate contamination 

resistance. Using a porous medium type open flow volume based hydraulic diameter as 

the characteristic length, the model demonstrated that Nusselt number and friction factor 

were independent of actual heat exchanger size for all configurations, pin height ratios 

and pin shapes.  This important finding permits microscale heat exchanger optimization 

to be performed on a more manageable macroscale basis since the dimensionless 

correlations can be directly transferred to the small scale.   

Additionally, the model demonstrated that airfoil-shaped pin-fin arrays 

outperform similar sized circular pin-fin arrays.  In the optimum airfoil-shaped pin array 

case modeled, the circular pin-fin array required three times the specific energy loss to 

produce the same heat transfer rate. In addition, experimental data have indicated that 

increased turbulence levels can improve heat transfer rates in airfoil pin arrays by 35-

50% while having no benefit for the circular pin array.  Thus the performance of the 
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airfoil-shaped pin array, already superior to the circular pin array, would be further 

enhanced in an installed configuration where turbulence was likely to be greater than in 

the laboratory or numerical environment. 

Further, optimum pin configuration depends greatly on the desired application.  In 

situations requiring large heat flux through a small face area, such as in electronic 

component cooling applications, increases in pin height ratio have a significant effect on 

performance.  This is due to the magnification of  wetted by pin-fin arrays thereby 

increasing effective heat transfer coefficient.  Details on this area magnification and a 

sample application are presented in Appendix F.  The trends observed in this study would 

be useful to provide the designer with initial guidance in producing the optimum heat 

exchanger design for a given application. 

Finally, it is important to understand some limits to the applicability of the 

correlations presented in this work.  First, since the effects of buoyancy and body forces 

were not investigated, results in a rotating reference frame may vary.  As such, direct use 

of these correlations would be more suited to stator blades or fixed electronic component 

cooling applications.  However, even for rotor blades, these correlations would provide 

the design engineer with a means of comparing the relative benefits of various pin-fin 

configurations.  Secondly, even if concerns over particulate contamination could be 

eliminated, there is a limit in size reduction based on the mean free path of the gas.  

Beyond this limit, the gas would no longer obey the continuum hypothesis on which the 

Navier-Stokes equations are based and could violate the no-slip condition along rigid 

boundaries.  Appendix G provides further details on this limitation. 
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APPENDIX A.  MODEL DETAILS 
GENERAL METHOD 

All models were constructed by first creating a three-dimensional “block” to 

represent the cooling air in the test array.  The pins were created by removing 

appropriately shaped volumes using Boolean subtraction from the initial block.  This 

resulted in holes in the model that represented the pin-fins in the test array.  Finally two 

additional 3-D blocks representing the adiabatic entry and exit duct were created and 

“glued” to the test array. 

ROUND PIN MODELS 
The round pins were constructed in ANSYS by simply creating circular volumes 

with the desired radius.  

AIRFOIL-SHAPED PINS 
The airfoil-shaped pins were created from the intersection of two circular volumes 

of radius, R, as shown in Figure 77.  The horizontal component of radius, Rx, was 

defined as a fraction of axial pitch, X, by specifying the desired length ratio (2*Rx/X) 

from the test matrix.  Then, slenderness ratio (Ry/Rx) was used to define Ry and achieve 

the desired aspect ratio (A/D).  Finally, R was calculated and the circle centers were 

spaced 2Ry apart.  The volume defined by the intersection of these circles was subtracted 

from the cooling air block and represented the airfoil-shaped pins.  

+
R

Ry

Rx

A

D

 
Figure 77 Airfoil construction details 
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ISOTHERMAL PIN BOUNDARY CONDITION JUSTIFICATION 

As stated earlier, the pins were treated as isothermal entities through boundary 

condition selection.  Calculations to justify this decision are present in this section.  The 

configuration used for these calculations is: S/D = X/D = 1.5, H/D = 1, X = 50 mm.  This 

was one of the experimental configurations. 

 

The governing equations for this calculation are taken from Incropera and DeWitt  

(Ref. 18).  Using an adiabatic tip assumption, they are: 

 ( )
( )

cosh
coshb b

m L xT T
T T mL

θ
θ

∞

∞

−−
= =

−
 

 

where 
c

hPm
kA

=   , T∞ is the cooling air temperature, 
b

T  is the pin base 

temperature, and T is the temperature along the pin at a distance x from the base.  Also, L 

is half the pin height (0.033 m) in order to use the adiabatic assumption. 

Perimeter, P = 0.1046 m, kaluminum = 177 (W/mK),  

and cross sectional area, Ac = 8.7092e-4 

For high Reynolds number (where this analysis is particularly important) h can be 

taken as approximately 150 W/m2K, based on experimental results. 

Substituting, m = 8.32 

 

Thus, ( ) ( )cosh 8.32 0.0165
cosh(8.32*0.0165)b

x
T T T T∞ ∞

−
= + −  

Assuming worst case conditions, 300T K∞ =  and  312bT K=  

The midpin temperature is 311.89K.  This is considered close enough to 312K to 

assume that the pin is isothermal. 
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APPENDIX B.  SAMPLE ANSYS MACRO 

In order to efficiently and systematically manage the large number of numerical 

models evaluated in this study macros were written for each heat exchanger type.  Each 

macro performed the following basic tasks: 

1. Provided easy input entry such as Reynolds number, pin spacing and 

height ratio, axial pitch, inlet air and wall temperature, reference pressure and mesh 

density. 

2. Constructed and meshed the model. 

3. Set ANSYS solution parameters to include solver type and iteration 

number. 

4. Ran the solution. 

In reviewing the following sample macro, the reader will notice that the solution 

is started three times.  This is to accommodate the sensitive nature of the Collocated 

Galerkin (COLG) solver.  For the initial solution, density is held constant and the MSU 

approach is used to discretize the momentum equations. No thermal analysis is 

conducted. This allows a rough flow solution to develop.  For the next series of iterations,  

density is allowed to vary according to the equation of state and the energy equation is 

solved.  For the third phase, COLG is used to discretize only the momentum equation.  

By  this point, the solution is fairly robust and the final phase can be initiated.  In the final 

phase, the COLG approach is used for all parameters.  In some cases, if the preliminary 

steps are not completed, the solution will diverge.  The sample macro is presented next: 
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/TITLE,Re=5000,X/D=1.5,S/D=1.5,Tw =306,h/v/p =7.8/15/2,SKE,COLG 
adv,10atm,1.5inf 
! creates an endless 1.5 pin fin array with 10 rows  
! unheated entry and exit regions 
! L.J. Hamilton 7 NOV 02 
!****************************************** 
!Enter Reference pressure in Pa 
Pref = 101350 
 
!Enter your Reynold's Number (VanFossen definition) 
Re=5000 
 
!Enter your X/D (cylinder spacing in the flow direction) 
xd=1.5 
 
!Enter your S/D (spanwise (perp to flow)  
sd=1.5 
 
!Enter your H/D (Pin height/diameter ratio) 
hd=1.0 
 
!Enter xy (h)/and z (v) grid scaling 
h = 7.8 
v = 15 
!Enter pin factor 
p = 2 
 
!Enter axial pitch (Absolute distance between pin centers) 
x=.0127 
 
!Enter your Twall  
Twall=306 
Tfilm = (Twall+300)/2 
 
 
! calculates pin diameter 
d=x/xd 
 
!Calculate kinematic viscosity using Sutherland Law 
rho = Pref/(287*Tfilm) 
rho300 = Pref/(287*300) 
!mu = 1.86e-5 
mu = 383.4/(Tfilm+110.4)*1.71e-005*(Tfilm/273)**(3/2) 
nu = mu/rho 
!calculated for a unit cell (s*2x) 
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Varray = 2*sd*xd*hd*d**3 
Vpin = 3.14159*hd*d**3/4 
Vopen = Varray - 2*Vpin 
Awpin = 3.14159*hd*d**2 
Afeet = 3.14159*d**2/4 
Awall = 2*sd*xd*d**2 - 2*Afeet 
Aw = 2*Awpin + 2*Awall 
Abar = Vopen/(2*x) 
Aduct = sd*hd*d**2 
Dprime = 4*Vopen/Aw 
 
 
!*******************Inlet Velocity Calculation********* 
 
Vin = Re*mu*Abar/(Dprime*rho300*Aduct) 
 
!*******************Determine length of pin section***** 
!Pin center to pin center streamwise distance 
ddx=d*xd 
!Pin center to pin center spanwise distance 
ssy=d*sd 
!Pin Height 
Ht = hd*d 
 
!Calculate entry length for FD turb flow 
EntryDh = 2*Ht 
EntryRe = Vin*EntryDh/nu 
entry = EntryDh*4.4*EntryRe**(1/6) 
entryinit = entry 
 
!Enter exit length (after the pins. Metz:7.62cm, to 
!                   prevent feedback in the ANSYS  
!                   soln: 12.5cm)[m] 
exit = 0.125 
 
!Total length of pin section with (xd/2)*d before the  
!leading edge and (xd/2)*d following the trailing edge 
!of the last row of pins. 
xlength= (ddx*10) 
!Total width of ANSYS model, insulated wall to sym plane. 
ylength= (ssy*1.5) 
!*********setup/overhead******************************** 
! ****************THIS MODULES SETS FLOTRAN PARMS********* 
!***********selects operating preference***************   
/NOPR    
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/PMETH,OFF,0 
KEYW,PR_SET,1    
KEYW,PR_STRUC,0  
KEYW,PR_THERM,1  
KEYW,PR_FLUID,0  
KEYW,PR_ELMAG,0  
KEYW,MAGNOD,0    
KEYW,MAGEDG,0    
KEYW,MAGHFE,0    
KEYW,MAGELC,0    
KEYW,PR_MULTI,1  
KEYW,PR_CFD,1    
/GO  
!*   
/COM,    
/COM,Preferences for GUI filtering have been set to display: 
/COM,  Thermal   
/COM,  FLOTRAN CFD   
!* 
/UNITS,SI 
/PREP7   
!* 
!selects element type   
ET,1,FLUID142    
!*   
!*****************INITIAL SOLN OPTIONS************* 
FLDATA1,SOLU,TRAN,0  
FLDATA1,SOLU,FLOW,1  
FLDATA1,SOLU,TEMP,0  
FLDATA1,SOLU,TURB,1  
FLDATA1,SOLU,COMP,0  
FLDATA1,SOLU,VOF,0   
FLDATA1,SOLU,SFTS,0  
FLDATA1,SOLU,IVSH,0  
FLDATA1,SOLU,SWRL,0  
FLDATA1,SOLU,SPEC,0  
FLDATA1,SOLU,ALE,0   
!******************INITIAL EXECUTION CONTROL********   
/COM,,Steady State Analysis,0    
FLDATA2,ITER,EXEC,30,    
FLDATA2,ITER,OVER,0, 
FLDATA2,ITER,APPE,0, 
FLDATA3,TERM,VX,0.01,    
FLDATA3,TERM,VY,0.01,    
FLDATA3,TERM,VZ,0.01,    
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FLDATA3,TERM,PRES,1e-008,    
FLDATA3,TERM,TEMP,1e-008,    
FLDATA3,TERM,ENKE,0.01,  
FLDATA3,TERM,ENDS,0.01,  
FLDATA5,OUTP,SUMF,10, 
FLDATA5,OUTP,YPLU,T 
!******************ADDED TO MAKE DENSITY AN OUTPUT 
FLDATA5,OUTP,DENS,T,    
!*   
/PREP7   
FINISH   
/PREP7  
!************INITIAL FLUID PROPERTIES (CONSTANT DENSITY)************* 
FLDATA12,PROP,DENS,4   
FLDATA13,VARY,DENS,0 
FLDATA12,PROP,VISC,4 
FLDATA13,VARY,VISC,1 
FLDATA12,PROP,COND,4 
FLDATA13,VARY,COND,1 
FLDATA12,PROP,SPHT,4 
FLDATA13,VARY,SPHT,1 
!*   
FLDATA7,PROT,DENS,AIR-SI 
FLDATA8,NOMI,DENS,-1 
FLDATA9,COF1,DENS,0  
FLDATA10,COF2,DENS,0 
FLDATA11,COF3,DENS,0 
FLDATA7,PROT,VISC,AIR-SI 
FLDATA8,NOMI,VISC,-1 
FLDATA9,COF1,VISC,0  
FLDATA10,COF2,VISC,0 
FLDATA11,COF3,VISC,0 
FLDATA12,PROP,IVIS   
FLDATA7,PROT,COND,AIR-SI 
FLDATA8,NOMI,COND,-1 
FLDATA9,COF1,COND,0  
FLDATA10,COF2,COND,0 
FLDATA11,COF3,COND,0 
FLDATA7,PROT,SPHT,AIR-SI 
FLDATA8,NOMI,SPHT,-1 
FLDATA9,COF1,SPHT,0  
FLDATA10,COF2,SPHT,0 
FLDATA11,COF3,SPHT,0 
!***Select ref temp = 300K************* 
FLDATA14,TEMP,NOMI,300 
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FLDATA14,TEMP,TTOT,300 
FLDATA14,TEMP,BULK,300 
FLDATA15,PRES,REFE,Pref 
!*  
!***PLACEHOLDER FOR TURBULENCE MODEL INPUTS**************  
!SKE=1(Default),ZETM=2,RNG=3,NKE=4,GIR=5,SZL=6 
!FLDATA24,TURB,MODL,1 
!*************TEMP CFD SOLVER IS PGMR********************   
FLDATA18,METH,TEMP,4 
FLDATA22,MAXI,TEMP,1000, 
FLDATA20,SRCH,TEMP,12,   
FLDATA20A,PGMR,FILL,6,   
FLDATA20A,PGMR,MODP,0,   
FLDATA21,CONV,TEMP,1e-12,    
FLDATA23,DELT,TEMP,1e-010,   
!* 
!***********ADVECTION PARMS***************  
FLDATA,ADVM,MOME,MSU    
FLDATA,ADVM,TURB,MSU    
FLDATA,ADVM,PRES,MSU 
FLDATA,ADVM,TEMP,MSU    
!* 
!************************BLOCK & PINS********************* 
/prep7 
!Creates initial block with extra 0.01 length 
 
!Start in middle of first row 
xloc=entry + ddx/2 
start=entry 
*do,i,1,5 
Block,entry,entry+ddx,0,ylength,0,Ht/2       
cyl4,xloc,ssy/2,d/2,,,,Ht/2 
cyl4,xloc,(ssy*1.5),d/2,,,,Ht/2 
Block,entry+ddx,entry+2*ddx,0,ylength,0,Ht/2 
cyl4,(xloc+ddx),0,d/2,,,,Ht/2 
cyl4,(xloc+ddx),ssy,d/2,,,,Ht/2 
xloc=xloc + (ddx*2) 
entry=entry + (ddx*2) 
 
*enddo 
 
!****************SUBTRACT PINS******************** 
FLST,2,10,6,ORDE,10 
FITEM,2,1    
FITEM,2,4    
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FITEM,2,7    
FITEM,2,10   
FITEM,2,13   
FITEM,2,16   
FITEM,2,19   
FITEM,2,22   
FITEM,2,25   
FITEM,2,28   
FLST,3,20,6,ORDE,20  
FITEM,3,2    
FITEM,3,-3   
FITEM,3,5    
FITEM,3,-6   
FITEM,3,8    
FITEM,3,-9   
FITEM,3,11   
FITEM,3,-12  
FITEM,3,14   
FITEM,3,-15  
FITEM,3,17   
FITEM,3,-18  
FITEM,3,20   
FITEM,3,-21  
FITEM,3,23   
FITEM,3,-24  
FITEM,3,26   
FITEM,3,-27  
FITEM,3,29   
FITEM,3,-30  
VSBV,P51X,P51X   
!************ADD ENTRY BLOCK******************* 
Block,0,start,0,ylength,0,Ht/2 
!************ADD EXIT BLOCK******************** 
Block,start+xlength,start +xlength+exit,0,ylength,0,Ht/2 
!need to glue entry and exit! 
FLST,2,12,6,ORDE,4   
FITEM,2,1    
FITEM,2,-2   
FITEM,2,31   
FITEM,2,-40  
VGLUE,P51X  
!***Model is now built 
! 
!*******************change the view to isometric******** 
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/VIEW, 1 ,1,1,1  
/ANG, 1  
/REP,FAST    
/AUTO, 1 
/REP 
VPLOT 
/color,pbak,off  
/REPLOT 
  
!************PINS****************************** 
!1/n 1/n 1/n 1/n 1/n 1/n 1/n 1/n 1/n 1/n 1/n 1/n  
 
!***********Cylinders (1/n) 
lsel,s,line,,16 
 
*do,i,0,1 
*do,k,0,4 
!Cylinders exit/upper side 
lsel,a,line,,16 + 1*i + 64*k 
!Cylinders inlet/lower side 
lsel,a,line,,56 + 5*i + 64*k 
*enddo 
*enddo 
 
 
*do,i,0,1 
*do,j,0,1 
*do,k,0,4 
!Cylinders exit/upper side 
lsel,a,line,,48 + 1*i + 10*j + 64*k 
!Cylinders inlet/lower wall side 
lsel,a,line,,14 + 5*i + 10*j + 64*k 
*enddo 
*enddo 
*enddo 
 
LESIZE,all,,,3*h/xd,1/p,,,,1 
 
!nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 
!***********************Cylinders (n) 
lsel,s,line,,15 
*do,i,0,1 
*do,k,0,4 
!Cylinders inlet/upper side 
lsel,a,line,,15 + 3*i + 64*k 
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!Cylinders exit/lower wall side 
lsel,a,line,,55 + 7*i + 64*k 
*enddo 
*enddo 
 
*do,i,0,1 
*do,j,0,1 
*do,k,0,4 
!Cylinders inlet/upper side 
lsel,a,line,,47 + 3*i + 10*j + 64*k 
!Cylinders exit/lower wall side 
lsel,a,line,,13 + 7*i + 10*j + 64*k 
*enddo 
*enddo 
*enddo 
 
LESIZE,all,,,3*h/xd,1/p,,,,1 
 
!************Test Section Symmetry lines, short**************** 
lsel,s,line,,321 
lsel,a,line,,322 
lsel,a,line,,219 
lsel,a,line,,220 
lsel,a,line,,228 
lsel,a,line,,229 
lsel,a,line,,281 
lsel,a,line,,282 
lsel,a,line,,301 
lsel,a,line,,302 
lsel,a,line,,307 
lsel,a,line,,308 
lsel,a,line,,365 
lsel,a,line,,366 
lsel,a,line,,194 
lsel,a,line,,199 
lsel,a,line,,173 
lsel,a,line,,174 
 
*do,i,0,3 
lsel,a,line,,153 + i  
lsel,a,line,,327 + i 
lsel,a,line,,335 + i  
lsel,a,line,,343 + i  
lsel,a,line,,351 + i   
*enddo 
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LESIZE,all,,,h*xd/3,,,,,1 
 
!******************Test Section Symmetry Lines, Long*************** 
lsel,s,line,,130 
lsel,a,line,,135 
lsel,a,line,,164 
lsel,a,line,,165 
lsel,a,line,,217 
lsel,a,line,,218 
lsel,a,line,,237 
lsel,a,line,,238 
lsel,a,line,,243 
lsel,a,line,,244 
lsel,a,line,,283 
lsel,a,line,,284 
lsel,a,line,,292 
lsel,a,line,,293 
lsel,a,line,,361 
lsel,a,line,,362 
lsel,a,line,,363 
lsel,a,line,,364 
lsel,a,line,,179 
lsel,a,line,,180 
 
LESIZE,all,,,3*h,,,,,1 
 
!****************Entry/Exit Symmetry Lines******************** 
lsel,s,line,,7 
lsel,a,line,,36 
lsel,a,line,,90 
lsel,a,line,,91 
 
LESIZE,all,,,15*h,2,,,,1 
 
!********Entry/Exit Symmetry Lines for proper spacing********** 
lsel,s,line,,71 
lsel,a,line,,100 
lsel,a,line,,26 
lsel,a,line,,27 
 
LESIZE,all,,,15*h,1/2,,,,1 
 
!**************Inlet and Exit Lines******************* 



 111

!**************Inlet and Exit Lines******************* 
lsel,s,line,,2 
lsel,a,line,,37 
lsel,a,line,,89 
lsel,a,line,,92 
 
LESIZE,all,,,3*h*sd/xd,,,,,1 
 
!***************Glue Lines************************* 
lsel,s,line,,25 
lsel,a,line,,28 
lsel,a,line,,3 
lsel,a,line,,6 
lsel,a,line,,35 
lsel,a,line,,38 
lsel,a,line,,67 
lsel,a,line,,70 
lsel,a,line,,99 
lsel,a,line,,102 
lsel,a,line,,131 
lsel,a,line,,134 
lsel,a,line,,163 
lsel,a,line,,166 
lsel,a,line,,195 
lsel,a,line,,198 
lsel,a,line,,227 
lsel,a,line,,230 
lsel,a,line,,259 
lsel,a,line,,262 
lsel,a,line,,66 
lsel,a,line,,101 
 
LESIZE,all,,,3*h*sd/xd,,,,,1 
 
!*****Vertical Lines Entry + those needed to ensure proper mesh*********** 
lsel,s,line,,52 
lsel,a,line,,45 
lsel,a,line,,109 
lsel,a,line,,116 
 
LESIZE,all,,,v,1/5,,,,1 
!***********Vertical Lines, Test Section + Exit*** 
lsel,s,line,,110 
lsel,a,line,,115 
lsel,a,line,,51 
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lsel,a,line,,46 
 
*do,i,0,1 
*do,k,0,8 
lsel,a,line,,10 + 1*i + 32*k 
*enddo 
*enddo 
 
!*****************vertical lines (pins)***** 
*do,i,0,1 
*do,j,0,1 
*do,k,0,4 
lsel,a,line,,21 + 1*i + 10*j + 64*k 
lsel,a,line,,53 + 1*i + 10*j + 64*k 
*enddo 
*enddo 
*enddo 
 
LESIZE,all,,,v,5,,,,1 
 
 
lsel,all 
asel,all 
 
!****************Boundary Conditions************* 
! 
!*****************Pins vx=vy=vz=0, T=Twall******* 
asel,s,area,,9 
 
*do,k,0,4 
*do,i,0,1 
asel,a,area,,9 + i + 28*k 
asel,a,area,,27 + i + 28*k 
*enddo 
asel,a,area,,14 +  28*k 
asel,a,area,,23 +  28*k 
*enddo 
 
 
 
DA,all,vx,0,1 
DA,all,vy,0,1 
DA,all,vz,0,1 
DA,all,TEMP,Twall,1 
 



 113

!*********************Entry/Exit endwalls vx=vy=vz=HFLU=0********** 
asel,s,area,,1 
asel,a,area,,12 
 
DA,all,vx,0,1 
DA,all,vy,0,1 
DA,all,vz,0,1 
SFA,ALL,,HFLUX,0 
 
!**********************Endwall, vx=vy=vz=0, T=Twall***** 
asel,s,area,,25 
asel,a,area,,32 
asel,a,area,,49 
asel,a,area,,54 
asel,a,area,,69 
asel,a,area,,77 
asel,a,area,,63 
asel,a,area,,82 
asel,a,area,,91 
asel,a,area,,41 
DA,all,vx,0,1 
DA,all,vy,0,1 
DA,all,vz,0,1 
DA,all,TEMP,Twall,1 
 
!*******symmetry (side) vy=0, HFLU=0 
asel,s,area,,7 
asel,a,area,,24 
asel,a,area,,141 
asel,a,area,,30 
asel,a,area,,45 
asel,a,area,,149 
asel,a,area,,53 
asel,a,area,,60 
asel,a,area,,157 
asel,a,area,,68 
asel,a,area,,73 
asel,a,area,,165 
asel,a,area,,81 
asel,a,area,,88 
asel,a,area,,173 
asel,a,area,,39 
asel,a,area,,16 
asel,a,area,,15 
asel,a,area,,36 
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asel,a,area,,40 
asel,a,area,,86 
asel,a,area,,170 
asel,a,area,,80 
asel,a,area,,72 
asel,a,area,,162 
asel,a,area,,67 
asel,a,area,,58 
asel,a,area,,154 
asel,a,area,,52 
asel,a,area,,44 
asel,a,area,,146 
asel,a,area,,29 
asel,a,area,,22 
asel,a,area,,4 
 
DA,all,vy,0,1 
SFA,ALL,,HFLUX,0 
 
!**********symmetry (middle) vz=0, HFLU=0****** 
asel,s,area,,2 
asel,a,area,,26 
asel,a,area,,35 
asel,a,area,,50 
asel,a,area,,57 
asel,a,area,,64 
asel,a,area,,71 
asel,a,area,,78 
asel,a,area,,85 
asel,a,area,,92 
asel,a,area,,43 
asel,a,area,,13 
DA,all,vz,0,1 
SFA,ALL,,HFLUX,0 
 
!************Inlet vx=Vin vy=vz=0, T=300K********* 
asel,s,area,,8 
DA,all,vx,Vin,1 
DA,all,vy,0,1 
DA,all,vz,0,1 
DA,all,TEMP,300,0 
 
!************Exit pdof=0*********** 
asel,s,area,,21 
DA,all,pres,0,0 
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asel,all 
!****************mesh***************************** 
FLST,5,12,6,ORDE,2   
FITEM,5,1    
FITEM,5,-12  
CM,_Y,VOLU   
VSEL, , , ,P51X  
CM,_Y1,VOLU  
CHKMSH,'VOLU'    
CMSEL,S,_Y   
!*   
VSWEEP,_Y1   
!*   
CMDELE,_Y    
CMDELE,_Y1   
CMDELE,_Y2   
!*   
/UI,MESH,OFF 
!***********run FIRST (0-30 iter) solution*************** 
/SOLU    
FINISH   
/SOLU    
SOLVE 
!*********SECOND SOLN (30-60 iter) OPTIONS*************   
FLDATA1,SOLU,TRAN,0  
FLDATA1,SOLU,FLOW,1  
FLDATA1,SOLU,TEMP,1  
FLDATA1,SOLU,TURB,1  
FLDATA1,SOLU,COMP,0  
FLDATA1,SOLU,VOF,0   
FLDATA1,SOLU,SFTS,0  
FLDATA1,SOLU,IVSH,0  
FLDATA1,SOLU,SWRL,0  
FLDATA1,SOLU,SPEC,0  
FLDATA1,SOLU,ALE,0   
!* 
!*********SECOND EXECUTION CONTROLS*************   
/COM,,Steady State Analysis,0    
FLDATA2,ITER,EXEC,30,    
FLDATA2,ITER,OVER,0, 
FLDATA2,ITER,APPE,0, 
FLDATA3,TERM,VX,0.01,    
FLDATA3,TERM,VY,0.01,    
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FLDATA3,TERM,VZ,0.01,  
FLDATA3,TERM,PRES,1e-08, 
FLDATA3,TERM,TEMP,1e-08, 
FLDATA3,TERM,ENKE,0.01,  
FLDATA3,TERM,ENDS,0.01,  
FLDATA5,OUTP,SUMF,10, 
FLDATA5,OUTP,YPLU,T 
!******************ADDED TO MAKE DENSITY AN OUTPUT 
FLDATA5,OUTP,DENS,T,    
!*   
!************SECOND FLUID PROPERTIES *************** 
FLDATA12,PROP,DENS,4   
FLDATA13,VARY,DENS,1 
FLDATA12,PROP,VISC,4 
FLDATA13,VARY,VISC,1 
FLDATA12,PROP,COND,4 
FLDATA13,VARY,COND,1 
FLDATA12,PROP,SPHT,4 
FLDATA13,VARY,SPHT,1 
!* 
FLDATA7,PROT,DENS,AIR-SI 
FLDATA8,NOMI,DENS,-1 
FLDATA9,COF1,DENS,0  
FLDATA10,COF2,DENS,0 
FLDATA11,COF3,DENS,0 
FLDATA7,PROT,VISC,AIR-SI 
FLDATA8,NOMI,VISC,-1 
FLDATA9,COF1,VISC,0  
FLDATA10,COF2,VISC,0 
FLDATA11,COF3,VISC,0 
FLDATA12,PROP,IVIS   
FLDATA7,PROT,COND,AIR-SI 
FLDATA8,NOMI,COND,-1 
FLDATA9,COF1,COND,0  
FLDATA10,COF2,COND,0 
FLDATA11,COF3,COND,0 
FLDATA7,PROT,SPHT,AIR-SI 
FLDATA8,NOMI,SPHT,-1 
FLDATA9,COF1,SPHT,0  
FLDATA10,COF2,SPHT,0 
FLDATA11,COF3,SPHT,0 
!*  
!***********SECOND ADVECTION PARMS***************  
FLDATA,ADVM,MOME,MSU    
FLDATA,ADVM,TURB,MSU    
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FLDATA,ADVM,PRES,MSU 
FLDATA,ADVM,TEMP,MSU    
!* 
!********run SECOND (30-60 iter) solution************* 
/SOLU    
FINISH   
/SOLU    
SOLVE  
!*******BEGIN THIRD solution (60-90 iter) options****************** 
!*********THIRD SOLN OPTIONS*************  
FLDATA1,SOLU,TRAN,0  
FLDATA1,SOLU,FLOW,1  
FLDATA1,SOLU,TEMP,1  
FLDATA1,SOLU,TURB,1  
FLDATA1,SOLU,COMP,0  
FLDATA1,SOLU,VOF,0   
FLDATA1,SOLU,SFTS,0  
FLDATA1,SOLU,IVSH,0  
FLDATA1,SOLU,SWRL,0  
FLDATA1,SOLU,SPEC,0  
FLDATA1,SOLU,ALE,0   
!* 
!*********THIRD EXECUTION CONTROLS*************   
/COM,,Steady State Analysis,0    
FLDATA2,ITER,EXEC,30,    
FLDATA2,ITER,OVER,0, 
FLDATA2,ITER,APPE,0, 
FLDATA3,TERM,VX,0.01,    
FLDATA3,TERM,VY,0.01,    
FLDATA3,TERM,VZ,0.01,  
FLDATA3,TERM,PRES,1e-08, 
FLDATA3,TERM,TEMP,1e-08, 
FLDATA3,TERM,ENKE,0.01,  
FLDATA3,TERM,ENDS,0.01,  
FLDATA5,OUTP,SUMF,10, 
FLDATA5,OUTP,YPLU,T 
!******************ADDED TO MAKE DENSITY AN OUTPUT 
FLDATA5,OUTP,DENS,T,    
!*   
!************THIRD FLUID PROPERTIES ************* 
FLDATA12,PROP,DENS,4   
FLDATA13,VARY,DENS,1 
FLDATA12,PROP,VISC,4 
FLDATA13,VARY,VISC,1 
FLDATA12,PROP,COND,4 
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FLDATA13,VARY,COND,1 
FLDATA12,PROP,SPHT,4 
FLDATA13,VARY,SPHT,1 
!* 
FLDATA7,PROT,DENS,AIR-SI 
FLDATA8,NOMI,DENS,-1 
FLDATA9,COF1,DENS,0  
FLDATA10,COF2,DENS,0 
FLDATA11,COF3,DENS,0 
FLDATA7,PROT,VISC,AIR-SI 
FLDATA8,NOMI,VISC,-1 
FLDATA9,COF1,VISC,0  
FLDATA10,COF2,VISC,0 
FLDATA11,COF3,VISC,0 
FLDATA12,PROP,IVIS   
FLDATA7,PROT,COND,AIR-SI 
FLDATA8,NOMI,COND,-1 
FLDATA9,COF1,COND,0  
FLDATA10,COF2,COND,0 
FLDATA11,COF3,COND,0 
FLDATA7,PROT,SPHT,AIR-SI 
FLDATA8,NOMI,SPHT,-1 
FLDATA9,COF1,SPHT,0  
FLDATA10,COF2,SPHT,0 
FLDATA11,COF3,SPHT,0 
!*  
!***********THIRD ADVECTION PARMS***************  
FLDATA,ADVM,MOME,COLG    
FLDATA,ADVM,TURB,MSU    
FLDATA,ADVM,PRES,MSU 
FLDATA,ADVM,TEMP,MSU    
!* 
!*******run THIRD (60-90 iter) solution*********** 
/SOLU    
FINISH   
/SOLU    
SOLVE 
!************FINAL (90 - max iter) solution****** 
!*********FINAL SOLN OPTIONS*************   
FLDATA1,SOLU,TRAN,0  
FLDATA1,SOLU,FLOW,1  
FLDATA1,SOLU,TEMP,1  
FLDATA1,SOLU,TURB,1  
FLDATA1,SOLU,COMP,0  
FLDATA1,SOLU,VOF,0   
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FLDATA1,SOLU,SFTS,0  
FLDATA1,SOLU,IVSH,0  
FLDATA1,SOLU,SWRL,0  
FLDATA1,SOLU,SPEC,0  
FLDATA1,SOLU,ALE,0   
!* 
!*********FINAL EXECUTION CONTROLS*************   
/COM,,Steady State Analysis,0    
FLDATA2,ITER,EXEC,120,    
FLDATA2,ITER,OVER,0, 
FLDATA2,ITER,APPE,0, 
FLDATA3,TERM,VX,0.01,    
FLDATA3,TERM,VY,0.01,    
FLDATA3,TERM,VZ,0.01,  
FLDATA3,TERM,PRES,1e-08, 
FLDATA3,TERM,TEMP,1e-08, 
FLDATA3,TERM,ENKE,0.01,  
FLDATA3,TERM,ENDS,0.01,  
FLDATA5,OUTP,SUMF,10, 
FLDATA5,OUTP,YPLU,T 
!******************ADDED TO MAKE DENSITY AN OUTPUT 
FLDATA5,OUTP,DENS,T,    
!*   
!************FINAL FLUID PROPERTIES ********************************* 
FLDATA12,PROP,DENS,4   
FLDATA13,VARY,DENS,1 
FLDATA12,PROP,VISC,4 
FLDATA13,VARY,VISC,1 
FLDATA12,PROP,COND,4 
FLDATA13,VARY,COND,1 
FLDATA12,PROP,SPHT,4 
FLDATA13,VARY,SPHT,1 
!* 
FLDATA7,PROT,DENS,AIR-SI 
FLDATA8,NOMI,DENS,-1 
FLDATA9,COF1,DENS,0  
FLDATA10,COF2,DENS,0 
FLDATA11,COF3,DENS,0 
FLDATA7,PROT,VISC,AIR-SI 
FLDATA8,NOMI,VISC,-1 
FLDATA9,COF1,VISC,0  
FLDATA10,COF2,VISC,0 
FLDATA11,COF3,VISC,0 
FLDATA12,PROP,IVIS   
FLDATA7,PROT,COND,AIR-SI 
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FLDATA8,NOMI,COND,-1 
FLDATA9,COF1,COND,0  
FLDATA10,COF2,COND,0 
FLDATA11,COF3,COND,0 
FLDATA7,PROT,SPHT,AIR-SI 
FLDATA8,NOMI,SPHT,-1 
FLDATA9,COF1,SPHT,0  
FLDATA10,COF2,SPHT,0 
FLDATA11,COF3,SPHT,0 
!*  
!***********FINAL ADVECTION PARMS***************  
FLDATA,ADVM,MOME,COLG    
FLDATA,ADVM,TURB,COLG    
FLDATA,ADVM,PRES,COLG 
FLDATA,ADVM,TEMP,COLG    
!* 
!**********************run FINAL (90- max iter) 
solution********************************** 
/SOLU    
FINISH   
/SOLU    
SOLVE 
!*********************make it go to last set************************ 
/POST1   
FINISH   
/POST1   
SET,LAST 
 
/post1 
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APPENDIX C.  DISCUSSION OF ANSYS SOLVERS 

The text in this appendix was taken from the ANSYS Theory reference manual 

(Ref. 17) to provide the reader with deeper insight into the algorithms used by 

FLOTRAN.  The equation numbers in this section refer to equations from that reference 

and are not intended to be in numerical sequence with the equations in the body of the 

dissertation. 

DERIVATION OF FLUID FLOW MATRICES 

A segregated, sequential solution algorithm is used. This means that element matrices are 

formed, assembled and the resulting system solved for each degree of freedom separately. 

Development of the matrices proceeds in two parts. In the first, the form of the equations 

is achieved and an approach taken towards evaluating all the terms. Next, the segregated 

solution algorithm is outlined and the element matrices are developed from the equations.  

Discretization of the Equations 

The momentum, energy, species transport, and turbulence equations all have the form of 

a scalar transport equation. There are four types of terms: transient, advection, diffusion, 

and source. For the purposes of describing the discretization methods, let us refer to the 

variable considered as . The form of the scalar transport equation is:  

Equation 7.68.  

 

where:  
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= transient and advection coefficient 

= diffusion coefficient  

= source terms  

Transport Equation Representation below shows what the variables, coefficients, and 

source terms are for the transport equations. The pressure equation is derived using the 

continuity equation. Its form will unfold during the discussion of the segregated solver. 

The terms are defined in the previous section.  

Since the approach is the same for each equation, only the generic transport equation 

need be treated. Each of the four types of terms will be outlined in turn. Since the 

complete derivation of the discretization method would require too much space, the 

methods will be outlined and the reader referred to more detailed expositions on the 

subjects.  

Transport Equation Representation  

 Meaning DOF   

vx x-velocity VX 1 e 
gx - 

p/ x + Rx 

vy y-velocity VY 1 e 
gy - 

p/ y + Ry 

vz z-velocity VZ 1 e 
gz - 

p/ z + Rz 

T temperature TEMP Cp K 
Qv + Ek

+ Wv + + 
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p/ t  

k 
kinematic 

energy 
ENKE 1 

t / 

k 
*** 

 
dissipation 

rate 
ENDS 1 

t / 

*** 
*** 

Yi 
species mass 

fraction 

SP01-

06 
1 Dmi 

0 

The discretization process, therefore, consists of deriving the element matrices to put 

together the matrix equation:  

Equation 7.69.  

 

Galerkin's method of weighted residuals is used to form the element integrals. Denote by 

We the weighting function for the element, which is also the shape function.  

Transient Term 

The first of the element matrix contributions is from the transient term. The general form 

is simply:  

Equation 7.70.  

 

A lumped mass approximation is used so that  

Equation 7.71.  
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A backward difference scheme is used to evaluate the transient derivative. On a nodal 

basis, the following implicit formulation is used. The current time step is the nth time 

step and the expression involves the previous two time step results.  

Equation 7.72.  

 

For a Volume of Fluid (VOF) analysis, the above equation is modified as only the results 

at one previous time step are needed:  

Equation 7.73.  

 

The above first-order time difference scheme is chosen to be consistent with the current 

VOF advection algorithm.  

The nth time step produces a contribution to the diagonal of the element matrix, while the 

derivatives from the previous time step form contributions to the source term.  

Advection Term 

Currently Flotran has three approaches to discretize the advection term. The monotone 

streamline upwind (MSU) approach is first order accurate and tends to produce smooth 

and monotone solutions. The streamline upwind/Petro-Galerkin (SUPG) approach and 

the collocated Galerkin (COLG) approach are second order accurate and tend to produce 

oscillatory solutions.  
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Monotone Streamline Upwind Approach (MSU) 

The advection term is handled through a monotone streamline approach based on the idea 

that pure advection transport is along characteristic lines. It is useful to think of the 

advection transport formulation in terms of a quantity being transported in a known 

velocity field. See Streamline Upwind Approach.  

Figure 7.1. Streamline Upwind Approach  

 

The velocity field itself can be envisioned as a set of streamlines everywhere tangent to 

the velocity vectors. The advection terms can therefore be expressed in terms of the 

streamline velocities.  

In pure advection transport, one assumes that no transfer occurs across characteristic 

lines, i.e. all transfer occurs along streamlines. Therefore one may assume that the 

advection term,  

Equation 7.74.  
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when expressed along a streamline, is constant through out an element:  

Equation 7.75.  

 

This formulation is made for every element, each of which will have only one node 

which gets contributions from inside the element. The derivative is calculated using a 

simple difference:  

Equation 7.76.  

 

where:  

D = subscript for value at the downstream node  

U = subscript for value taken at the location at which the streamline through the 

downwind node enters the element  

s = distance from the upstream point to the downstream node  

The value at the upstream location is unknown but can be expressed in terms of the 

unknown nodal values it is between. See Streamline Upwind Approach again.  

The process consists of cycling through all the elements and identifying the downwind 

nodes. A calculation is made based on the velocities to see where the streamline through 

the downwind node came from. Weighting factors are calculated based on the proximity 

of the upwind location to the neighboring nodes.  

Additional details are provided by Rice and Schnipke (Ref. 23).  
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Streamline Upwind/Petro-Galerkin Approach (SUPG) 

The SUPG approach consists of a Galerkin discretization of the advection term and an 

additional diffusion-like perturbation term which acts only in the advection direction.  

Equation 7.77.  

 

where:  

= global coefficient set to 1.0  

h = element length along advection direction 

 

 

 

It is clear from the SUPG approach that as the mesh is refined, the perturbation terms 

goes to zero and the Galerkin formulation approaches second order accuracy. The 

perturbation term provides the necessary stability which is missing in the pure Galerkin 

discretization. Additional details are provided by Brooks and Hughes (Ref. 24).  
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Collocated Galerkin Approach (COLG) 

The COLG approach uses the same discretization scheme with the SUPG approach with 

a collocated concept. In this scheme, a second set of velocities, namely, the element-

based nodal velocities are introduced. The element-based nodal velocities are made to 

satisfy the continuity equation, whereas the traditional velocities are made to satisfy the 

momentum equations. 

 

Where all the parameters are defined similar to those in the SUPG approach. 

In this approach, the pressure equation is derived from the element-based nodal 

velocities, and it is generally asymmetric even for incompressible flow problems. The 

collocated Galerkin approach is formulated in such a way that, for steady-state 

incompressible flows, exact conservation is preserved even on coarse meshes upon the 

convergence of the overall system. 

Diffusion Terms 

The expression for the diffusion terms comes from an integration over the problem 

domain after the multiplication by the weighting function.  

Equation 7.79.  
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The x, y and z terms are all treated in similar fashion. Therefore, the illustration is with 

the term in the x direction. An integration by parts is applied:  

Equation 7.80.  

 

Once the derivative of is replaced by the nodal values and the derivatives of the 

weighting function, the nodal values will be removed from the integrals  

Equation 7.81.  

 

Equation 7.82.  

 

The diffusion matrix may now be expressed as:  

Equation 7.83.  

 

Source Terms 
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The evaluation of the source terms consists of merely multiplying the source terms as 

depicted in Streamline Upwind Approach by the weighting function and integrating over 

the volume.  

Equation 7.84.  

 

Segregated Solution Algorithm 

Each degree of freedom is solved in sequential fashion. The equations are coupled, so 

that each equation is solved with intermediate values of the other degrees of freedom. 

The process of solving all the equations in turn and then updating the properties is called 

a global iteration. Before showing the entire global iteration structure, it is necessary to 

see how each equation is formed.  

The preceding section outlined the approach for every equation except the pressure 

equation, which comes from the segregated velocity-pressure solution algorithm. In this 

approach, the momentum equation is used to generate an expression for the velocity in 

terms of the pressure gradient. This is used in the continuity equation after it has been 

integrated by parts. This nonlinear solution procedure used in FLOTRAN belongs to a 

general class of Semi-Implicit Method for Pressure Linked Equations (SIMPLE). There 

are currently two segregated solution algorithms available. One is the original SIMPLEF 

algorithm, and the other is the enhanced SIMPLEN algorithm.  

The incompressible algorithm is a special case of the compressible algorithm. The change 

in the product of density and velocity from iteration to the next is approximating by 

considering the changes separately through a linearization process. Denoting by the 

superscript * values from the previous iteration, in the x direction, for example, results:  

Equation 7.85.  
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The continuity equation becomes:  

Equation 7.86.  

 

The transient term in the continuity equation can be expressed in terms of pressure 

immediately by employing the ideal gas relationship:  

Equation 7.87.  

 

The backward differencing process is then applied directly to this term.  

Application of Galerkin's method to the remaining terms yields:  

Equation 7.88.  
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There are thus three groups of terms. In the first group, terms with the derivatives of the 

unknown new velocities must be integrated by parts to remove the derivative. The 

integration by parts of just these terms becomes:  

Equation 7.89.  

 

Illustrating with the x direction, the unknown densities in the second group expressed in 

terms of the pressures are:  

Equation 7.90.  

 

In the third group, the values from the previous iteration are used to evaluate the 

integrals.  
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The next step is the derivation of an expression for the velocities in terms of the pressure 

gradient. When the momentum equations are solved, it is with a previous value of 

pressure. Write the algebraic expressions of the momentum equations assuming that the 

coefficient matrices consist of the transient, advection and diffusion contributions as 

before, and all the source terms are evaluated except the pressure gradient term.  

Equation 7.91.  

 

Equation 7.92.  

 

Equation 7.93.  

 

Each of these sets represents a system of N algebraic equations for N unknown velocities. 

It is possible, after the summation of all the element quantities, to show an expression for 

each velocity component at each node in terms of the velocities of its neighbors, the 

source terms which have been evaluated, and the pressure drop. Using the subscript "i" to 

denote the nodal equation, for i = 1 to N, where N is the number of fluid nodes and 

subscript "j" to denote its neighboring node:  

For SIMPLEF algorithm: 

Equation 7.94.  
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Equation 7.95.  

 

Equation 7.96.  

 

For SIMPLEN algorithm: 

 

 

 

where for SIMPLEF algorithm:  

Equation 7.100.  
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Equation 7.101.  

 

Equation 7.102.  

 

and or SIMPLEN algorithm: 
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Here the aij represent the values in the x,y and z coefficient matrices for the three 

momentum equations, r is the relaxation factor, and bi is the modified source term taking 

into effect the relaxation factors. 

For the purposes of this expression, the neighboring velocities for each node are 

considered as being known from the momentum equation solution. At this point, the 

assumption is made that the pressure gradient is constant over the element, allowing it to 

be removed from the integral. This means that only the weighting function is left in the 

integral, allowing a pressure coefficient to be defined in terms of the main diagonal of the 

momentum equations and the integral of the weighting function:  

For SIMPLEF algorithm: 

Equation 7.106.  

 

Equation 7.107.  

 

Equation 7.108.  
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For SIMPLEN algorithm: 

 

 

 

Therefore, expressions for unknown nodal velocities have been obtained in terms of the 

pressure drop and a pressure coefficient.  

Equation 7.112.  

 

Equation 7.113.  

 

Equation 7.114.  

 

These expressions are used to replace the unknown velocities in the continuity equation 

to convert it into a pressure equation. The terms coming from the unknown velocities 



 138

(replaced with the pressure gradient term) and with the unknown density (expressed in 

terms of the pressure) contribute to the coefficient matrix of the pressure equation while 

all the remaining terms will contribute to the forcing function.  

The entire pressure equation can be written on an element basis, replacing the pressure 

gradient by the nodal pressures and the derivatives of the weighting function, putting all 

the pressure terms on the left hand side and the remaining terms on the right hand side 

(equation 7.115).  

Equation 7.115.  

 

It is in the development of the forcing function that the solution to the momentum 

equation comes into play: the "hat" velocities contribute to the source term of the 

pressure equation.  

In the incompressible case, the second and fourth lines of the above equation disappear 

because the linearization defined in equation (7.85) is unnecessary. The second line is 

treated with the same advection routines that are used for the momentum equation.  

The final step is the velocity update. After the solution for pressure equation, the known 

pressures are used to evaluate the pressure gradients. In order to ensure that a velocity 
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field exists which conserves mass, the pressure term is added back into the "hat" 

velocities:  

For SIMPLEF algorithm: 

Equation 7.116.  

 

Equation 7.117.  

 

Equation 7.118.  

 

For SIMPLEN algorithm: 
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The global iterative procedure is summarized below.  

• Formulate and solve equation approximately  

• Formulate and solve equation approximately  

• Formulate and solve equation approximately  

• Formulate pressure equation using , , and  

• Solve pressure equation for P  

• Update velocities based on , , , and P  

• Formulate and solve energy equation for T  

• Solve species transport equations  

• Update temperature dependent properties  

• Solve turbulence equations for k and  

• Update effective properties based on turbulence solution  

• Check rate of change of the solution (convergence monitors)  

• End of global iteration  
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APPENDIX D.  EXPERIMENTAL DETAILS 
EXPERIMENTAL RIG OVERVIEW 

 
This photograph shows the test section installed between the plexiglass inlet duct 

and the exit chamber.  Note the insulation on the chamber to minimize hat loss to the 

room.  The white PVC pipe extending from the exit chamber leads to the flowmeter (not 

pictured here).  Although not visible, the thermocouples measuring the outlet air 

temperature are located at the junction of the exit chamber and the PVC pipe. Behind the 

apparatus (from left to right) are the relay board, relay controller and data acquisition 

computer. The inclined manometer can be seen at the lower edge of this photo. 
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TEST SECTION DETAIL 

 
This photo shows the test section disconnected from the inlet and outlet ducts.  To 

the right of the test section is the relay board.  On this board are mounted the 20 

independent  relays to energize the strip heaters.  During normal operation this board is 

covered by a plexiglass cover to prevent inadvertent contact with the electrical leads. 
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THERMOCOUPLE PLACEMENT AT TEST ARRAY OUTLET 

 

This photo shows the placement of the four thermocouples used to find the 

average outlet temperature.  The thermocouples are taped to the gasket and placed 

between the exit duct and PVC pipe that leads to the flowmeter.  Although the flow is 

expected to be well mixed by this point care was taken to capture various points in the 

flow.  As such the thermocouples are placed to measure four different radii (R) in the 

pipe entrance.  As seen in the photo, these locations are approximately equal to R, R/2, 

R/4 and R/8. 

FLOWMETER INTERIOR VIEW 

 

This photo shows the interior of the turbine flowmeter. 
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REYNOLDS NUMBER CONTROL 

  

 

These bleed valves were used in conjunction with inlet filters to  control the mass 

flow rate through the test array.  In this way the blower (below the lab table) was 

operated at constant velocity for all runs.  This provided consistency and repeatability 

between runs. 
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APPENDIX E. UNCERTAINTY ANALYSIS 
 
The uncertainty analysis was conducted using the following general governing 

equation taken from Ref. 21: 
1 222 2

1 2
1 2

R n
n

R R Rw w w w
x x x

     ∂ ∂ ∂ = + + +     ∂ ∂ ∂       
 

where R is a given function of the independent variables x1,x2,…xn 

and wR is the uncertainty. 

 Using this method, the uncertainty was calculated for Reynolds number, Nusselt 

number and friction factor.  

REYNOLDS NUMBER UNCERTAINTY CALCULATION: 

Given that Re h
Dh

UDρ
µ

=  , 

and  

1 222 2
Re

Re
Dh U Dh

Dh h

w w w w
U D

ρ

ρ

      = + +     
      

 (note that wµ is assumed to be zero) 

 

it is necessary to find the uncertainty for each variable. 

Density: p
RT

ρ =  therefore, 1
p RT
ρ∂
=

∂
 and 2

1
T RT
ρ∂
= −

∂
  

Then, 
1 2 1 22 2 2 21.25 0.5 0.0017

101350 300
p T

w w w
p T

ρ

ρ

          = + = + =         
           

 

Velocity: To find the uncertainty in velocity, the uncertainty in volumetric flow 

rate and average area must be known since U
A
∀

=   and 
1 22 2

U Aww w
U A

∀
    = +    ∀     

 



 146

Volumetric flow rate: f

f

V
k

∀ =  where Vf is the flowmeter voltage output and kf is 

the flowmeter constant (pulses/ft3).   

From the manufacturer’s calibration sheet, wv = 0.03 volts and wk = 1.2 pulses/ft3 

and kf = 132 pulses/ft3.  Therefore: 

1 22 2
0.03V k V

f f f f

w w w w
V k V V

∀
    
 = + ≈ =      ∀      

 

 

Average area: openV
A

L
=  where L is the array length 

1 22 2
VopenA L

open

ww w
A V L

     = +        
  

1 2 1 222 2 2 2 23 1 0.5 0.017
500 250 33

Vopen yx z

open

w ww w
V x y z

             = + + = + + =            
              

 

where x, y and z are dimensions (in mm) in all three axes. 

3 0.006
500

Lw
L

= =  

so, ( ) ( )
1 22 20.017 0.006 0.018Aw

A
 = + =   

therefore,  

( )
1 21 2 22 2

20.03 0.030.018U A

f f

ww w
U A V V

∀
         = + = + ≈        ∀          

 

For hydraulic diameter: 
4 open

h
w

V
D

A
=  and 

1 22 2
VopenDh Aw

h open w

ww w
D V A

     = +        
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Where 
1 2 1 222 2 23 1 0.007

500 250
yAw x

w

ww w
A x y

         = + = + =         
           

 

So ( ) ( )
1 22 2

1 22 20.017 0.007 0.018VopenDh Aw

h open w

ww w
D V A

       = + = + =          
 

Substituting: 

( ) ( )
1 21 2 222 2

2 2Re 0.030.0017 0.018
Re

Dh U Dh

Dh h f

w w w w
U D V

ρ

ρ

           = + + = + +                  
 

So the relative Reynolds number uncertainty decreases as flowmeter voltage 

increases corresponding to higher Reynolds number values.  The following table shows 

the range of Reynolds numbers and associated uncertainty values. 

ReDh Flowmeter voltage Relative uncertainty 

5,000 0.66 4.9% 

45,000 6.30 1.9% 

 

NUSSELT NUMBER UNCERTAINTY CALCULATIONS: 

Given h
Dh

hDNu
k

= , 

1 222
DhNu h Dh

Dh h

w w w
Nu h D

    = +   
    

 since k is considered constant. 

Also, 
w lm

Qh
A T

=
∆

 and 

1 2222

lmTQh Aw

w lm

www w
h Q A T

∆
    
 = + +     ∆       

 

So uncertainty values must be found for Q, Aw and ∆Tlm. 

Since Q is based on the time that the strip heaters are energized, the relative 

uncertainty is approximately equal to the smallest increment of “on” time, or 8.547 

seconds, divided by total run time.  For all experimental runs, total run time was 20 

minutes.  
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Therefore, 8.547 0.007
1200

Qw
Q

= =  

For uncertainty in temperature measurements, both the 6 and 12 degree 

temperature difference cases must be considered.  With an advertised uncertainty of 0.5K 

for each thermocouple, the relative uncertainty is approximately 0.083 for the 6 degree 

case and 0.042 for the 12 degree case.   

Since these values are much larger than the relative uncertainty values for heat 

flux and wetted area, the relative uncertainty for heat transfer coefficient can be reduced 

to: 

1 2 1 22 222

lm lmT TQh Aw

w lm lm

w www w
h Q A T T

∆ ∆
        
   = + + ≈      ∆ ∆             

 

The same argument holds true for Nusselt number uncertainty so, for the 6 and 12 

degree temperature difference cases, DhNu

Dh

w
Nu

= 8.3 and 4.2 % respectively. 

FRICTION FACTOR UNCERTAINTY CALCULATIONS: 

For 2

2 hpDf
U Lρ
∆

= ,  

1 222 2 2
f p Dh L

h

w w ww w
f p D L

ρ

ρ
∆

        = + + +      ∆        
 

In the above equation, all uncertainties have been found while calculating 

uncertainties for Reynolds number and Nusselt number with the exception of pressure 

drop.  Using the inclined manometer, pressure drop uncertainty is constant and is 

approximately 1.25 Pa as the column was graduated in 0.01 inches of water.  Therefore, 

the relative uncertainty for pressure drop is dependent on absolute pressure drop as 

shown in the following equation: 

( ) ( )
1 2 1 222 2 22 2

2 21.25 30.018 0.0017
500

f p Dh L

h

w w ww w Pa
f p D L p

ρ

ρ
∆

             = + + + = + + +          ∆ ∆              
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The following table provides relative uncertainty values for friction factor for 

various pin configurations at each Reynolds number limit. 

 

Pin type ReDh ∆p (Pa) Relative uncertainty 

33 mm round 5000 - 45000 40 - 2500 3.3 - 0.62% 

16.5 mm round 5000 - 45000 38 - 840 3.4 - 0.64% 

10 mm round 5000 - 45000 6.4 - 480 20.0 – 0.68% 

airfoil 5000 - 45000 4.5 - 200 25 - 0.78% 
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APPENDIX F.  SAMPLE APPLICATION 
 

WETTED AREA MAGNIFICATION 

One way of characterizing pin-fin heat exchanger utility is by thinking of the 

array as a wetted area multiplier.  Consider a requirement to transfer heat across a 

specific area via forced convection such as in an electronic component cooling 

application. Without a pin-fin array, this would dictate a specific heat transfer coefficient 

that may not be attainable depending on the heat flux requirement.  By employing a pin-

fin array, the wetted area can be magnified to the extent that a reasonable average heat 

transfer coefficient would satisfy the cooling requirement. Geometrically, this wetted area 

magnification factor can be resolved on a unit cell basis.   

 

First, consider the definition of area density or α: 

 
wetted

total

A
V

α =  

 
and *total faceV A H=  
 

where faceA  is the heat exchanger “footprint” with a specified heat flux 

requirement and H is the heat exchanger height. 

 

Thus the magnification factor would be: 

 
wetted

face

AH
A

α =  



 152

AIRFOIL-SHAPED PIN-FIN CONFIGURATION 

The diagram below shows a unit cell for an airfoil-shaped pin-fin array.  Note that 

there are two pins in the cell.  It is “S” wide, “2X” long and “H” high. 

 

 
Using the airfoil dimensions shown below, it is possible to derive an expression 

for the area magnification factor, Hα .   Although this is derived for an airfoil-shaped pin 

array, the relationship can also be applied to a circular pin-fin array by letting Ry = 0. 
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Wetted area calculation: 

 
2* 4* 2*wetted endwall pf pinsidesA A A A= − +  

 
where 2endwallA XS=  
 

pin footprint, 22 2pf x yA R R Rθ= −    

where 1tan x

y

R
R

θ −
 

=   
 

 

(note that for a circular pin, pfA reduces to 2Rπ ) 

and the surface area of the pin sides, 4pinsidesA HRθ=  

(for the circular pin, pinsidesA  reduces to 2 Rπ ) 

Thus, 

 
( ) ( )24 4 2* 2 4

2
x yXS R R R HR

H
XS

θ θ
α

− − +
=  

 

But, XDLR
X

=  , x

y y

D RxAR
D R R

= =
−

, and 
sin

xRR
θ

=  

Substituting, 

 

( )
2

2
2

2 41
sin sin

2
2

y

y

AR AR HAR AR
D

H
AR S

LR D

θ θ
θ θ

α

 
− − −   

 = −
 
  
 

 

where yD D=  for the airfoil-shaped pin-fin 

and 
( )

1
2

4tan
1yD AR

θ −
 
 =

−  
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While this equation looks imposing, it can be used to evaluate the trends in 

magnification factor when S/D, H/D, LR and AR are varied.  Table 17 shows the changes 

in area magnification factor as these basic parameters are changed.  Magnification factor 

increases as S/D and LR are decreases and H/D and AR are increased.   

Table 17 Magnification factor trends, airfoil-shaped pins 
 

S/D H/D LR AR αH 
2 1 0.7 6.2 2.24 
5 1 0.7 6.2 2.10 
5 4 0.7 6.2 2.95 
5 4 0.5 6.2 2.68 
5 4 0.9 6.2 3.22 
5 4 0.9 2.4 3.35 
3 4 0.7 4.24 3.40 
2 4 0.9 2.4 5.38 
2 16 0.9 2.4 13.85 
2 32 0.9 2.4 26.17 

 
CIRCULAR PIN-FIN CONFIGURATION 

For the circular pin case, with Ry = 0, 

( )( )
12
2

HH
X D S D D

πα  = + − 
 

 

Here, it can be seen that the magnification factor can be increased by increasing 

H/D and decreasing X/D and S/D.  However, as shown previously, better performance in 

terms of h vs. E can be achieved with wide spacing pin ratios.  Therefore, the best 

practical solution will likely be a tradeoff between desired heat transfer and allowable 

pressure drop.  By programming the magnification factor equation and Nusselt number 

and friction factor correlations into a spreadsheet such a trade study could be 

accomplished for a given application. 
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SAMPLE APPLICATION 

Consider an example where the heat flux requirement is 1.6 W/cm2 with a 40 

degree log mean temperature difference.  This defines an effective heat transfer 

coefficient or heff, requirement of 400 W/m2K. 

The required heat transfer coefficient, effh
h

Hα
=  

Three different pin spacings and 2 pin height ratios can be compared to evaluate 

the best configuration for this application.  These six combinations are presented in Table 

18.  The fifth column in the table shows the required heat transfer coefficient based on 

the effects of the area magnification factor.  The next column shows resulting energy loss 

for each array for a unit face area as calculated from the previously developed 

correlations for Nusselt number and friction factor. The final column shows heat transfer 

coefficient divided by specific fluid friction energy thereby providing a measure of array 

efficiency. 

Table 18 Possible sample application solutions 
 

X/D S/D H/D αH h (W/m2K) E (W/m2) h/E (1/K) 
1.5 1.5 1 2.70 148.3 29.2 5.1 
3 3 1 2.17 183.9 44.4 4.1 
5 5 1 2.06 193.9 26.6 7.3 

1.5 1.5 4 6.89 58.1 3.1 19.0 
3 3 4 3.22 124.2 37.2 3.3 
5 5 4 2.44 163.9 60.8 2.7 

 
 

Due to the effects of the magnification factor, the configuration X/D = 1.5, S/D = 

1.5, H/D = 4.0 would be the best solution for this application out of the options 

considered.  By way of comparison, an airfoil-shaped pin-fin array with S/D = 3, H/D = 

4, LR = 0.7 and AR = 4.24 met this cooling requirement with an h/E = 48.8.  This 

highlights once again the superior performance of the airfoil-shaped pin array. 
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APPENDIX G.  LIMITS ON AXIAL PITCH 
 

SIZE LIMITATIONS BASED ON KNUDSEN NUMBER 
Previously in this work, the minimum heat exchanger hydraulic diameter was 

limited by concerns regarding particulate contamination.  To avoid clogging, minimum 

passage dimensions were set at 0.3 mm or 300 microns.  This determined the dimensions 

for the optimum practical circular pin case, S/D = X/D = 5.0, H/D = 0.25 and X = 6 mm, 

resulting in a hydraulic diameter equal to 0.6 mm.  In a highly filtered environment where 

particle sizes could be on the order of 1 micron or smaller, such as in electronic 

component cooling applications in clean room environments, the heat exchanger could be 

further reduced in scale to improve performance. However, in such a situation flow under 

rarefied conditions of a gas could become a limiting factor.  This topic will be discussed 

briefly in this Appendix.  The following information on the role of the Knudsen number 

and the Mach number in determining rarefied flow regimes is taken from Ref. 25. and 

Ref. 26. 

 
KNUDSEN NUMBER 

The Knudsen number, Kn, is defined as the ratio of the mean free path of the gas 

and the flow characteristic diameter.  Thus: 

h

Kn
D
λ

=  

λ is the mean free path and is defined by: 

22 c

kT
p

λ
π σ

=  

where k is Boltzmann’s constant, 1.380662e-23 J/K 

T = temperature (K) 

p = pressure (N/m2) and 

cσ  = collision diameter of the gas (m) 

For T = 300K, p = 101350 N/m2 and cσ  taken to be 3 x 10-10 m, 1 7eλ ≈ − m 
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For values of 0.001Kn ≤ , the continuum hypothesis is considered valid and the 

flow can be analyzed using Navier-Stokes equations with no-slip boundary conditions.  

For Kn > 0.001, rarefaction effects start to become significant and the flow enters the slip 

regime. In this range the continuum solution validity begins to breakdown.  To remain in 

the continuum regime in the current study, the minimum hydraulic diameter should be 

0.1 mm or 100 microns. 

 
APPLIED LIMIT 

As shown above, the minimum hydraulic diameter must be 0.1 mm to avoid 

rarefaction effects of flow such as slip at the rigid boundaries.  In terms of the optimum 

circular pin-fin array, mentioned above, an axial pitch of 1 mm would yield a hydraulic 

diameter of 0.1 mm.  This reduction in hydraulic diameter from 6 to 1 mm would result 

in an increase in area density from 65 to 328 cm2/cm3.  

 
MACH NUMBER CONSIDERATIONS 

In addition to using Knudsen number as a flow regime check, Mach number can 

be used to further define the region of gas dynamics.  From Ref. 26, one accepted 

boundary for large Reynolds number flows is determined by the ratio 
Re

Ma .  If this ratio 

exceeds 0.01, then a slip-flow analysis must be used.  Using various inlet velocities, this 

ratio can be evaluated for several pin-fin configurations to see if the slip-flow regime is 

encountered.  Table 19 shows various circular pin and airfoil-shaped pin arrays each with 

a hydraulic diameter of 100 microns.  In each case, Reynolds number has been 

maximized until 0.01
Re

Ma
= .  Using an inlet flow temperature of 300K, the speed of 

sound is taken as 350 m/s. 

The Reynolds numbers shown indicate a limit below which the slip-flow region 

would be encountered.  Note that especially for the circular pin arrays, the limiting 

Reynolds  number  is  higher than what would normally be considered practical based on 
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the high average flow velocity.  From this table it is clear that Mach number 

considerations pose no additional limit beyond the Knudsen number limits described 

above. 

 

Table 19 Flow regime boundaries based on Mach number 

Circular Pins (X/D = S/D = 5.0) 

H/D X (m) ReDh U (m/s) ReDh

Ma  

0.25 1.00e-3 500 80.9 0.01 

16 3.20e-5 500 79.2 0.01 

Airfoil-shaped Pins (S/D = 2.0, LR = 0.5, AR = 6.2) 

H/D X (m) ReDh U  (m/s) ReDh

Ma  

0.25 2.70e-3 45 7.0 0.01 

16 2.30e-4 45 7.0 0.01 
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